
Route Administration System for
Aalborg Climbing Club

Developing Applications – From Users to Data,
Algorithms, and Tests – and Back Again

Group:

DS315e16
ds315e16@cs.aau.dk

Supervisor:
Jane Billestrup

December 20, 2016

mailto:ds315e16@cs.aau.dk

Department of Computer Science
Aalborg University

http://cs.aau.dk

Title:
Route Administration System for Aalborg
Climbing Club

Theme:
Developing Applications – From Users to
Data, Algorithms, and Tests – and Back Again

Project Period:
Fall 2016

Group:
DS315e16
ds315e16@cs.aau.dk

Participants:
Morten Rask Andersen
Anton Christensen
Christian Mønsted Grünberg
Mathias Ibsen
Mathias Steen Jakobsen
Jacob Svenningsen
Henrik Herbst Sørensen

Supervisor:
Jane Billestrup

Pages:
136

Date of Completion:
December 20, 2016

Number of Copies:
0

Abstract:

This report is about developing a route admin-
istration system for Aalborg Climbing Club.
By using OOA&D techniques the problem is
analysed.
Requirements for the design and scope of the
system is defined through user cooperation by
performing interviews.
From these requirements follows the problem
statement: How can we develop a mobile sys-
tem that allows multiple members to easily ad-
ministrate climbing routes including associated
grades, sections, images, betas, ratings and
comments?
The system developed is a web application de-
signed primarily for smartphones, such that
the current manual whiteboard system can be
moved to the user’s pockets.
By working iteratively, the system has grad-
ually been built up from the most important
must-have requirements, to the less important
should-have and could-have requirements.
Through user evaluations, usability tests, and
unit tests, the system has been tested to en-
sure that the users can use the system, and
ensure that the new system fulfils the estab-
lished requirements.
Finally, it is concluded that the system solves
the problem statement. The will-not-have re-
quirements are discussed as possible features
that can be included in future development.

mailto:ds315e16@cs.aau.dk

Preface

This report is the product of a third semester project by the group ds315e16 consisting of
seven Software and Computer Science students attending Aalborg University. The project
started in September 2016 and ended in December 2016. The theme of the report is the digi-
tisation of an administration system for Aalborg Climbing Club. The system developed in
this project is accessed through a web-application, which can be found at the following URL:
http://ds315e16.cs.aau.dk/. An account with administrative privileges:

Username: admin
Password: 1234

We would like to thank Aalborg Climbing Club for allowing us to test the system on several of
their members, and especially Mattias Hornum for his cooperation with us during the project.
We would also like to thank our supervisor, Jane Billestrup, for her advice and guidance during
the project.

Reading Guide

The report is the product of several iterative work cycles. Therefore, all chapters in the report
have not been written chronologically, but should be read as such. All sections have a short
description of the content and purpose of the section. Likewise, most sections end with a short
summary. It is expected that the reader possesses a general knowledge of the subjects of object-
oriented programming, systems development, object-oriented analysis and design, and design
and evaluation of user interfaces.

In the bibliography the following notation for referencing books and articles are used: author
initial, author surname, year published, URL/ISBN. To cite these books and articles an author-
year citation style is used.

In this report, we conducted an interview. To reference this interview we use the following
notation to, for example, reference line 182 of the interview transcription: (Hornum, 2016, L.
182). The full transcription can be found in appendix B.

Unless otherwise stated, the illustrations and figures used in this report have been made by
the group ds315e16. In some of the code listings shown in the report, we have only included the
essential parts. Removed sections of the code have been replaced by an ellipsis [. . .].

Classes mentioned throughout the report are formatted as Route, and when methods or func-
tions are mentioned, they are be formatted as AddRoute. The formatting does not differentiate
between OOA&D classes and C# classes.

i

http://ds315e16.cs.aau.dk/

Contents

1 Introduction 1

2 Methodology 3
2.1 Software Development Methods . 3

2.1.1 Software Development Activities . 3
2.1.2 The Traditional Approach . 4
2.1.3 The Iterative Approach . 5
2.1.4 Deciding on a System Development Method 6

2.2 Interviewing . 8

3 System Choice 11
3.1 First Interview with Aalborg Climbing Club . 11
3.2 PACT Analysis . 12

3.2.1 People . 12
3.2.2 Activities . 14
3.2.3 Context . 17
3.2.4 Technology and Current System . 18

3.3 Requirements . 20
3.4 Problem Statement . 22
3.5 Defining the New System . 22

3.5.1 System Definition . 23
3.5.2 FACTOR Analysis . 23

4 Problem-domain Analysis 25
4.1 Classes Activity . 25

4.1.1 Selecting Classes . 25
4.1.2 Selecting Events . 27

4.2 Structure Activity . 28
4.3 Behaviour Activity . 29

4.3.1 Section . 29
4.3.2 Route . 30
4.3.3 Rating, Hold, Comment, and Beta . 30
4.3.4 Member . 31
4.3.5 Grade . 31

ii

5 Application-domain Analysis 33
5.1 Actors and Use Cases . 33

5.1.1 Actor Specifications . 33
5.1.2 Use Case Specifications . 36
5.1.3 Actor Table . 44

5.2 Functions . 45
5.2.1 Defining Functions of the System . 45
5.2.2 List of Functions . 46

6 Architectural Design 49
6.1 Criteria . 49

6.1.1 Prioritising . 49
6.2 Technical Platform . 51

6.2.1 Platform and Interaction . 52
6.2.2 Programming Languages and Frameworks 52

6.3 System Architecture . 52
6.3.1 Model Component . 53
6.3.2 Controller Component . 54
6.3.3 Client Service Component . 57
6.3.4 View Model Component . 58
6.3.5 View Component . 58

6.4 Connecting Components . 59

7 User Interface Design 63
7.1 Prototyping . 63

7.1.1 Purpose of Prototypes . 63
7.1.2 Horizontal and Vertical Prototyping . 64
7.1.3 Types of Prototypes . 64
7.1.4 Low-fidelity Presentation Prototype . 65

7.2 Page Overview . 68
7.2.1 Find Route Page . 68
7.2.2 Route Info Page . 69
7.2.3 New/Edit Route Page . 69
7.2.4 Admin Panel Page . 70
7.2.5 Log In/Register Page . 71
7.2.6 Site Navigation Structure . 72

7.3 Design Principles and Guidelines . 73
7.4 Using Design Guidelines . 76

7.4.1 Using Material Design . 76
7.4.2 General Design Considerations . 78

8 Implementation 81
8.1 Server-side . 81

8.1.1 Database . 81
8.1.2 API . 85
8.1.3 Login . 86
8.1.4 Cookie Authentication or Token Authentication 86
8.1.5 Search . 90

8.2 Client-side . 93

iii

8.2.1 Distribution . 93
8.2.2 Client . 94
8.2.3 Implementing the User Interface . 95
8.2.4 Implementing Route Images . 97
8.2.5 Implementing Comments and Betas . 100

9 Testing 103
9.1 Purpose of Testing . 103
9.2 Unit Testing Frameworks . 103

9.2.1 NUnit . 104
9.2.2 QUnit . 104

9.3 Controller Test . 105
9.3.1 Section Controller . 106
9.3.2 Route Controller . 106
9.3.3 Grade Controller . 106
9.3.4 Member Controller . 107
9.3.5 Hold Color Controller . 107

9.4 Client Service Tests . 107
9.5 View Model Unit Tests . 108

10 Usability Evaluation 111
10.1 Usability . 111

10.1.1 Usability Testing . 111
10.1.2 Analysing Usability Testing . 113
10.1.3 Usability Testing during the Project . 113

10.2 First Usability Test . 114
10.3 Second Usability Test . 117
10.4 Third Usability Test . 119

11 Discussion 123
11.1 General concerns . 123
11.2 Fulfilment of Requirements . 124

11.2.1 Must-have Requirements . 124
11.2.2 Should-have Requirements . 126
11.2.3 Could-have Requirements . 127

11.3 Choice of Software Development Method . 128

12 Conclusion 129

13 Future Development 131
13.1 Using the System Outside of AKK . 131
13.2 Improving the System for AKK . 132

Bibliography 134

Appendices 137

A First Iteration: Preparations for Semi-structured Interview 138

B First Iteration: Interview Transcriptions (29th of September 2016) 141

iv

C First Iteration: Notes From Second Interview With Paper Prototype (25th of
October, 2016) 161

D First Iteration: Usability Test (9th of November 2016) 163

E Second Iteration: Usability Test (1st of December 2016) 167

F Third Iteration: Usability Test (8th of December 2016) 171

G Client Service Test Result 180

H Additional Classes 182

v

Chapter 1

Introduction

Today, climbing is a popular sport; in the last decade, the number of members in the International
Foundation of Sport Climbing (IFSC) has increased by 25 percent (IFSC, 2016). In Denmark
alone, the number of members has increased from 2263 in 2005 to 6942 in 2015, which translates
to an increase of approximately 207 percent in a decade (Fester, 2016). This increase in popularity
is also reflected by the fact that climbing has been included in the official proposal for the Tokyo
Olympics in 2020 (Kunio, 2015).

There exist many different types of climbing such as mountaineering, rock climbing, sports
climbing, and indoor climbing. Typically for indoor climbing, the climber uses a specific set of
holds to climb a wall. One such set of holds is called a route.

In this project, a route administration system for indoor climbing in Aalborg Klatreklub
(AKK) was developed. AKK is a Danish climbing club with 269 members located just outside
of Aalborg (Aalborg klatreklub, 2016a). The AKK building is split into two halls: one with
rope climbing routes and one with bouldering routes. These two types of climbing, are described
in depth in section 3.2. The hall with bouldering routes consists of two floors. Routes in the
bouldering hall are regularly added and removed, so to get an overview of the routes, a system
of whiteboards has been used in the club. This system has users write the routes they create on
different whiteboards depending on the difficulty of the route, also known as the grade.

According to a member of AKK a restriction of their current system is that it was “a bit
difficult to get an overview, especially if you have to go upstairs.” (Hornum, 2016, L.301-302).
The users of the system had to go back and forth between the whiteboards and the routes, which
is especially bothersome when they are climbing the routes on the second floor, since the current
whiteboards are located on the first floor. Another problem we observed while visiting the club
was limited space on the whiteboards, resulting in pieces of paper with route information having
to hang around the whiteboards. This project aims to help AKK solve the problems with their
current system.

In this report, we begin by describing the methodology used in the project in chapter 2.
Thereafter, we further analyse the problem and define the system to be developed in chapter
3. In chapter 4, we start to model how the problem domain should be represented in the
system, which is followed by an analysis of the users and different use cases of the system in
chapter 5. In chapter 6, we create a prioritised list of selected design criteria and describe the
technical platform used in the project followed by a description of the system architecture and the
underlying components. In chapter 7 the system user interface is explained and presented. We
discuss how a presentation prototype was used in the project to get feedback from the client on
design ideas. In chapter 8, the implementation of the system is documented with corresponding

1

Chapter 1. Introduction

code snippets. In chapter 9, we explain how we tested essential parts of the system, and in
chapter 10 we evaluate the system with the users. The report is then ends with an discussion,
conclusion and an assessment of ideas for future development, as described in chapters 11, 12,
and 13 respectively.

2

Chapter 2

Methodology

In this chapter the overall methods for software development and data-collection used throughout
the project are described. To do so, the five activities of the Object Oriented Analysis and
Design (OOA&D) method are specified. The advantages and disadvantages of two software
development methods are discussed. This knowledge is used to choose which one to use, for
developing the system and cooperating with users. Lastly, three different interview types are
described: structured, semi-structured and unstructured.

2.1 Software Development Methods

In this section, the choice of the overall methods in this project is described. We describe the
object-oriented analysis and design (OOA&D) method and how activities within this approach
are structured in the traditional and the iterative approach. Finally, we derive the overall method
used for this project by looking at the advantages and disadvantages of the two approaches and
describe how we include different activities for cooperating with future users of the system.

2.1.1 Software Development Activities

The overall activities in this project are based on the OOA&D method as described by (Mathi-
assen et al., 2000). The OOA&D method comes with tools and techniques for developing systems
in the object-oriented paradigm. In this section, we briefly describe the activities of OOA&D:
system choice, problem-domain analysis, application-domain analysis, architectural design, and
component design.

System Choice

The purpose of the system choice activity is to determine the overall properties of the system
that is going to be developed. This is done by describing the future system in a system definition,
which contains a clear description of the system’s functionality, application domain, conditions,
technology, objects, and responsibilities, also known as the FACTOR criteria (Mathiassen et al.,
2000, p. 39-41).

Problem-domain Analysis

Mathiassen et al. (2000) describes the problem domain as the part of the environment, which
is administered, surveyed, or controlled by the system. In the problem-domain analysis, the

3

Chapter 2. Methodology 2.1. Software Development Methods

purpose is to both define and describe the problem domain (Mathiassen et al., 2000, p.6). To do
this, different types of interviews can be used, as explained in section 2.2. After gaining an initial
understanding of the problem domain, we can begin to find and select classes, objects, structures,
and events in the problem domain by creating class diagrams and event tables. The end-result
of the problem-domain analysis is a model representing the problem domain (Mathiassen et al.,
2000, p.45).

Application-domain Analysis

The application domain can be described as the organisation that administrates, monitors or
controls the problem domain (Mathiassen et al., 2000, p.6). In the application-domain analysis,
the purpose is to analyse and find requirements for the use of the system (Mathiassen et al., 2000,
p.115). In this activity, we must first determine different use cases and the types of users that
are going to follow these use cases. A use case is a pattern that describe interactions between the
system and the users (Mathiassen et al., 2000, p.120). From these use patterns a list of functions
for the system can be derived.

Architectural Design

In the architectural design activity, the purpose is to structure the system (Mathiassen et al.,
2000, p.173). We start by defining different system criteria and prioritise them based on how
important they are for the system. Examples of system criteria could be portability or security
(Mathiassen et al., 2000, p.178). The second part of architectural design is to define the un-
derlying system architecture. We do this by specifying which components the system is divided
into and how they interact. An example of a system with a simple architecture is a system that
consists of three main components: interface, functions, and model.

Component Design

In the component design activity, we use the specifications of the architecture to design com-
ponents, create component specifications, and in greater detail, design how the components are
connected to each other. To do this for the simple architecture, we can look at the model, func-
tion and interface components. The result of the model component is a revised version of the
class diagram created in the problem-domain analysis. In the function component, we specify
components containing all the functions derived in the application-domain analysis. Further-
more, we design our functions like operations, explore patterns and specify complex operations
(Mathiassen et al., 2000, p.251-270). Lastly, the result is a component specification that describes
each component and its responsibility.

2.1.2 The Traditional Approach

Activities in the OOA&D method can be structured differently. The first of two software devel-
opment approaches we describe is the traditional approach. The traditional approach describes
the process of software development as a series of steps where each step must be completed before
moving on to the next (Mathiassen et al., 2000). This means that the developer must obtain a
clear understanding of both the problem domain and application domain before trying to design
the system. This method only allows the developer to move forward, which means that once an
understanding of the requirements of the system has been obtained, the design process starts
and no more requirement gathering can take place.

4

Chapter 2. Methodology 2.1. Software Development Methods

One of the advantages of this method is that it forces the developers to understand the
problem in depth before trying to implement a solution. Because of this, more time is spent on
the analysis, and therefore implementing the system is easier, since the way different parts of the
system interacts with each other, is already known.

Another advantage is that it structures the activities in a chronological order, which means
there is no moving back and forth between activities; This makes it easier to figure out which
activity the developer should work on at a given time in the project.

Only moving forward introduces some problems as well, as it can be difficult to adapt to
changes in the problem domain, if one cannot go back and adjust the analysis of the problem
domain after it has been completed.

Another problem that can arise from only moving forward is that later activities are based
on the result of previous activities, which can cause problems if mistakes were made in past
activities or if these activities were not entirely completed. This illustrates another problem,
which is that it can be difficult to determine whether any given activity is completed or not.

Using the traditional approach, time can become a very limiting factor. It may be easier to
plan the entirety of the project in the beginning since the order of activities is set in stone, but
it also means that if any of the activities take longer than planned, the time schedule quickly
suffers. This may result in later activities being shortened to compensate for lost time.

In the next section, we present an iterative approach as an alternative for developing software,
which relieves the developer of the problem that the last activities in a project are more likely
to suffer under time pressure than the first.

2.1.3 The Iterative Approach

”An iterative approach [...] allows an increasing understanding of the problem through successive
refinements, and to incrementally grow an effective solution over multiple iterations.” (Software,
1998). In each iteration knowledge is obtained so the perception of the problem is shifted. This
means that each iteration brings the developer closer to the final product.

Usability evaluation can be used in the different iterations of the iterative approach where
smaller parts of the system can be tested and evaluated without the final product being finished.

The fact that there are going to be possibilities for getting feedback from clients and users
also means that problems that would not have been found through analysis alone can be fixed.

If the project is constrained by a time limit, the iterative approach can be used to implement
most important features in early iterations and less important features in later iterations and
thereby ensure that there is a higher possibility for the most important features to be implemented
before the deadline of the project.

A disadvantage of the iterative approach, is that the need to look at smaller parts of the
system in each iteration, means that it is necessary to determine which parts the system should
be split into. This is more of a disadvantage if there are few iterations, as the division of parts
is less flexible than if there are e.g. five more iterations in which the division can be fine-tuned
further.

Another disadvantage is, that it can be difficult to keep focus when jumping back and forth
between different activities.

In the next section the final method for this project is decided by comparing and selecting
how the activities in OOA&D are going to be included, which approach is used to structure these
activities and finally, how other activities for user cooperation are included.

5

Chapter 2. Methodology 2.1. Software Development Methods

2.1.4 Deciding on a System Development Method

The purpose of this section is to decide on a method for system development used throughout
this project, while also discussing why we made the choice we did. Furthermore, each activity in
the method, which tools we can use to incorporate our clients in our work is illustrated.

In section 2.1.2 and 2.1.3 the advantages and disadvantages of the traditional approach and
the iterative approach were described. These advantages and disadvantages of both development
approaches are summarised in table 2.1, which can help decide which approach to use.

Approach Advantages Disadvantages

Traditional • Understanding the entire problem
makes programming easier

• Knowing all connections between
components before programming

• Difficult to adapt to changes in the
problem domain

• Later activities depend on previ-
ous activities

• Time constraints negatively affect
important parts of the system,
such as quality insurance and im-
plementation

Iterative • Enables usability evaluation on
smaller parts of the system

• If constrained by time the develop-
ers can choose to start develop the
most important parts of the sys-
tem

• Difficult to keep focus if going back
and forth between different activi-
ties

• Hard to focus on smaller parts of
the system without first getting an
overview of the entire system

Table 2.1: Advantages and disadvantages of the traditional and iterative approaches

To decide on a method for this project we look at the advantages and disadvantages and
compare them to some of the conditions and constraints we have in this project.

We are limited by time, in that the project has to be turned in on the 21st of December 2016.
Additionally there is a demand for our system to be developed in cooperation with future users,
and systematically tested to show that it solves the client’s problem.

Limited Time

If we intend to use the traditional approach, then there is a risk of spending too much time
on the analysis and design activities in which case we do not have enough time to implement
and evaluate the entire system, because we are constrained by time. We could therefore, in the
worst case, end up with a system that cannot be demonstrated. If we use the iterative approach
instead, we can divide the system into smaller individual parts. Because a smaller part of the
system does not require as much time to develop as the entire system, it is more likely that we
end up with at least some of the parts of the system fully developed and evaluated.

6

Chapter 2. Methodology 2.1. Software Development Methods

Cooperation with Users

Both the traditional and iterative approach enables user cooperation. The different activities in
OOA&D gives us information that can be shown and discussed with users, but some of them are
more technical than others. It makes more sense showing the analysis design to the client, rather
than to the prospective users. Generally speaking, prototypes and quality assurance are going
to be the main points of interaction between the developer and the users of the system. With a
traditional approach, these two activities only happen once, and the last one leaves us little room
to use the results in the system due to time constraints. With an iterative approach, however,
the activities happen once per iteration, which means that it is more suitable for cooperating
with the future users, and also use the feedback from them in later iterations.

Systematic Testing and Determining if the Problem has been Solved

To make a systematic test of a system one must first have a system to test, and secondly, the
resources to test it and check whether it solves the client’s problem or not. This can be difficult
with the traditional approach since we only do each activity once and cannot skip to the next
activity before finishing the current one. Because of this, we do not know if we have the time or
resources left to systematically test and evaluate the system since evaluation is the last activity
in the traditional approach. In comparison, if we use the iterative approach, it is more likely
that we have a system, or at least a part of a functional system, that can be tested.

Choosing the Methodology for this Project

We have decided to use the iterative approach because it enables us to develop a functional part
of the entire system, where we can focus on the most important requirements, before focusing on
smaller details. Having a fully functional part of the system allows us to test it and to analyse if
it solves the client’s problem. By evaluating smaller parts of the system after each iteration, we
ensure that we catch usability problems as early as possible, which can then be rectified in the
following iteration.

We use the iterative approach in a way, that incorporates principles from the traditional
approach, by doing activities in each iteration in chronological order, which helps us maintain
an overview of the OOA&D method. Using this method also allows us to develop small parts of
the system in each iteration as well as knowing what activity we are at, and what activity that
is next.

Figure 2.1 illustrates the method chosen for this project.

7

Chapter 2. Methodology 2.2. Interviewing

System Choice

Analysis

Design

Programming

Evaluation

Interview

Prototype

Usability Evaluation

User Cooperation

Figure 2.1: Illustrating the method for this project based on the iterative approach of OOA&D
combined with activities for user cooperation.

The boxes on the left illustrate the activities we go through in chronological order in each
iteration. Here, the system choice covers the initial steps of the system development, where we
formulate the system definition. The analysis covers both the problem and application domain,
where we identify and model the problem domain, and determine the requirements of the future
system in the application domain.

The design activity covers architectural, function and component design, where we structure
the system and describe its components. Second to last, we begin programming the system,
followed by the last activity, which is an evaluation of the developed system in each iteration,
where we conduct usability tests.

The dotted boxes on the right illustrate methods for how we can include users during each
iteration to gather information. The activities for user cooperation during the project are de-
scribed later in the report where we discuss how we have used it.

2.2 Interviewing

Interviewing is our main method for gathering information from our client and future users
during the project. Interviewing is specifically used to gather information for understanding the
problem domain and application domain. In this section, we describe three different types of
interviews: structured, semi-structured, and unstructured. Finally, some of the advantages and
disadvantages of the three interview types is compared.

8

Chapter 2. Methodology 2.2. Interviewing

Structured Interview

In a structured interview, all questions regarding the interview are prepared before conducting
the interview (Benyon, 2014, p.142-143). When conducting a structured interview, the questions
must be asked in the same order and wording as prepared (Benyon, 2014, p.142-143). This type
of interview is very close to using a questionnaire, but it allows the interviewees to respond more
broadly. A questionnaire must be designed very carefully and all possible ways of answering it
must have been thought of beforehand. A structured interview can make this process slightly
easier, as the interviewees are not as constrained in a conversation, as if they are filling out a
form, be it digital or not.
Advantages:

• Easy to conduct the interview

• Easy to analyse and evaluate the data

Disadvantages:

• No additional knowledge beyond those of the predefined questions can be discovered

Semi-structured Interview

Before conducting a semi-structured interview, different topics or questions should be prepared
(Benyon, 2014, p.142-143). When conducting a semi-structured interview the predefined ques-
tions or topics serve as a guide for the interview. The interviewer is then responsible for asking
follow-up questions to gather all relevant information (Benyon, 2014, p.142-143). This type of
interview is useful if the interviewer already has some information about the relevant problem,
but wants more in-depth knowledge, while also accepting the fact that he or she, most likely has
not thought of everything.
Advantages:

• Additional knowledge beyond those of the predefined questions can be discovered

Disadvantages:

• Difficult to analyse and evaluate the data from different interviews, since most data will
differ

Unstructured Interview

In an unstructured interview there are no questions or topics prepared beforehand and the only
guideline that the interviewer has, is an overall subject (Benyon, 2014, p.153).
Advantages:

• Virtually no preparation is needed

• The interviewer does not need to know much about the subject

Disadvantages:

• Very difficult to analyse and evaluate the data. Especially to compare data from different
interviewees

• Difficult interview to conduct efficiently, as it is easy to get sidetracked

9

Chapter 2. Methodology 2.2. Interviewing

Comparing Types of Interviews

If the interviewer only needs answers to a predefined set of questions, a structured interview
makes it easy to conduct the interview. Data from a structured interview is also easy to analyse
and evaluate because data from all interviews follow the same template. This also means that
statistics can be made directly from the gathered data. It is more difficult to analyse and evaluate
data from a semi-structured or unstructured interview because the questions and their format
vary from interview to interview.

In a structured interview one cannot get additional knowledge outside the topics or areas
that the predefined questions cover, since one is not allowed to ask follow-up questions, which is
possible in semi-structured and unstructured interviews.

Unstructured interviews are easy to prepare, compared to structured and semi-structured in-
terviews because the interviewer does not need to have any knowledge or any predefined questions
about the subject. It can, however, be difficult for the interviewer to know what information he
or she needs to gather, due to the lack of knowledge about the subject they are conducting an
interview on.

Recording Interviews

In all three types of interviews, it is important to ensure that all essential information gathered
during the interview, is available for later analysis. To ensure this, devices for video and audio
recording can be used. When choosing to record the interview with a video camera, there will
be a lot of information that needs to be processed afterwards. To make this easier, one of the
people conducting the interview can write down notes about important moments of the interview,
including times synchronised with the video, which then serve as pointers to highlights in the
video (Benyon, 2014, p.145).

Summary

In this chapter, methods for software development and data-collection were described. The
activities of OOA&D were described in detail, and because of the time frame of the project and
the fact that cooperation with users is an important aspect of this project, the iterative method
for software development was chosen. Furthermore, different forms of interviews were described.

The knowledge of interviews that was obtained from this, was used in the next chapter, which
includes descriptions of interviews conducted.

10

Chapter 3

System Choice

In this chapter, the requirements of the system developed in this project, are described. To
select the requirements a PACT analysis is used. It is used to achieve an understanding of the
people, activities, context, and technologies at Aalborg Climbing club. Throughout the PACT
analysis, requirements are derived. Each requirement is then prioritised using the MoSCoW
rules. From these prioritised requirements a system definition is created. A FACTOR analysis
that summarises the findings in the system definition is also included.

3.1 First Interview with Aalborg Climbing Club

The purpose of this section is to describe the first interview with Aalborg Climbing Club; this
includes the goal of the interview and the choices made regarding it.

To prepare questions for the first interview, a preliminary PACT analysis was made, with
the purpose of obtaining a basic understanding of Aalborg Climbing Club, before conducting the
first interview.

It was decided that a semi-structured interview, which is described in section 2.2, should be
conducted. The reason for that, was that very little was known about climbing and the context
in which it is performed. Having limited knowledge of a subject can make it significantly more
difficult to prepare well-defined questions. This meant that the interview was structured loosely
by defining themes we wanted covered during the interview, instead of making a structured
interview.

To be able to organise and plan the semi-structured interview well, it was necessary to come
up with overall themes that could give us the information we required. First and foremost, it was
necessary to get a good fundamental understanding of climbing as an activity and the systems
currently in use in the club. Secondly, we needed to know more about the users for which we
were designing. To further specify the direction in which the conversation should go when the
interview was conducted, each main theme was split into smaller sub-themes, which can be seen
in appendix A.

Only three of the total seven group members went to AKK to conduct the first interview.
This decision was made to prevent making the project client and interviewee, Mattias Hornum,
feel intimidated by a large group of interviewers. The three group members each had a role:
an interviewer, a cameraman, and a secretary. The interview was conducted on the 29th of
September, 2016. Initially, we asked Hornum demography-related questions such as his age, his
interests, his reason for climbing, etc. The conversation quickly gravitated towards climbing and
we agreed that the rest of the interview would benefit greatly from seeing the climbing halls

11

Chapter 3. System Choice 3.2. PACT Analysis

and the current system. After a quick tour of the club, we resumed the interview with a better
general understanding of the things we were going to cover in the rest of the interview.

After the interview, we used the data collected to create a PACT analysis, as described in
section 3.2.

3.2 PACT Analysis

The following sections are based on the PACT analysis model which is divided into four main
topics: people, activities, context and technology. A PACT analysis is a useful tool for under-
standing a situation or problem and see where improvements can be made (Benyon, 2014, p.43).
Throughout the PACT analysis, we formulate possible improvements for the situation in AKK
as requirements. We differentiate between two types of requirements: direct requirements and
derived requirements. A direct requirement is a requirement we received from the client. A
derived requirement is a requirement that is found through analysing the information gathered
in the PACT analysis. We choose to present requirements directly in the PACT analysis to make
it clear what information the different requirements are based on.

3.2.1 People

In this section, the people of AKK are described and analysed. This includes information about
their demographic, physical and psychological differences, as well as a look at their common
disabilities.

Demographic

According to Hornum, AKK is a club with a wide range of members. From table 3.1, it can
be seen that AKK has a total of 269 members and that these differ a lot in age and gender.
Furthermore, quite a few of the club’s members are foreign exchange students, as mentioned in
the interview: “Well we have quite a few foreign members here. Exchange students.” (Hornum,
2016, L.183).

It is important to develop a system that is intuitive and usable for all members of the club,
regardless of their nationality, gender, and age.

Developing a system that needs to be accessible to foreigners as well as locals draws focus
to language differences and cultural differences. Language issues may not only be related to
foreigners, but also to children. Danish children are taught English from first grade in elementary
school, at which point they are usually between six and eight years old (EMU, 2016) (UVM, 2015).

To cater to the needs of not only foreigners, but also children, the system should be available
in both Danish and English. Seeing as there are often significant differences in the mental models
of people of differing ages, it is also important to consider these when designing the user interface.

Derived Requirement: The system must be available in both Danish and
English.

12

Chapter 3. System Choice 3.2. PACT Analysis

Membership type Male Female Percentage

Age 0-12 11 22 ≈ 12
Age 13-18 10 13 ≈ 9
Age 19-24 63 26 ≈ 33
Age 25-59 85 39 ≈ 46
Age 60+ 0 0 0
Total 169 100 100
Instructors 0-24 3
Instructors 25+ 26

Total combined 269

Table 3.1: Membership Statistics for AKK. Source: AKK

Physical Differences

Physical differences, such as height, are also relevant to take into account when constructing a
new climbing route. Some people may be too tall to climb a specific route, where others may
be too short. As both adults and children are present, the importance of differences in height
is amplified. The average ten-year-old is about 140 cm tall (Afd. for Vækst og Reproduktion,
Rigshospitalet, 2014). However, at the age of 20, the height difference between the genders varies,
since men are, on average, 181 cm tall, and women 169 cm tall (Afd. for Vækst og Reproduktion,
Rigshospitalet, 2014). There is, for example, a gap of 38 cm between boys who are aged 10 and
men who are aged 20. Physical differences like height might be relevant to consider if the future
system were to distinguish routes on the distances between holds. If the distance is too large,
the route may not be suitable for young climbers. To address this, the system could show routes
that are suitable for younger climbers.

Psychological Differences

While people’s physical characteristics differ greatly, it is also very common for people to have
different psychological traits. There can, for example, be a significant difference in how good
people’s spatial ability is. Having bad spatial ability can make it difficult to navigate easily in
the real world, but also interactive systems can be challenging to navigate successfully (Benyon,
2010, p. 32). Language differences are also categorised as a psychological difference (Benyon,
2010, p. 32).

While there are several differences in the way people understand, behave, and process in-
formation, there are certainly also traits that almost all people share. Especially when asking
users to perform relatively cumbersome work, most people might appear lazy (M.D., 2014). As
pointed out by Hornum, it is tough to make users carry out tasks that requires much more than
a couple of seconds of work. “. . . people are lazy. There is never anyone who wants to create a
cool overview picture. That is why I think that a simple task such as taking a picture, I mean,
anyone can go in there [the bouldering hall], snap a picture of a section and upload it. It takes
four seconds, it is easy to do. However, if you have to draw instead. . . ” (Hornum, 2016, L.
577-582).

Hornum also stated in a later interview that: “Since the people who are creating the routes are
volunteers, then using the system should be as problem free and simple as possible.” (appendix
C). In this project a simple system is defined as a system that is easy to use. Therefore we derive
the following requirement for the system.

13

Chapter 3. System Choice 3.2. PACT Analysis

Derived Requirement: The system must be easy to use.

Common Disabilities

Colour blindness may have to be taken into account. Most often, climbing routes are differenti-
ated by colour, and therefore, the colours being used have to be colour blind friendly, otherwise
colour blind people cannot distinguish between routes. According to the National Eye Institute:
“As many as 8 percent of men and 0.5 percent of women with Northern European ancestry have
the common form of red-green colour blindness.” (National Eye Institute, 2015). Even though,
we are not aware of any current members of AKK being colour blind, it might be relevant to
take into consideration.

3.2.2 Activities

In this section, the activities related to climbing will be described and analysed. In this project,
we look at two types of climbing: rope climbing and bouldering. Hornum describes the two types
of climbing as follows: “One is rope climbing, [. . .], where you climb with rope, and then in here
[referring to a different room], there is bouldering, where you climb without rope, then it is not
as high and then there is a mattress.” (Hornum, 2016, L.155-158).

Bouldering

Bouldering is a short low-height type of climbing, where the climber climbs without a rope, as
shown in figure 3.1. The climbers are often faced with difficult challenges that they have to
overcome to finish the route(Dansk Klatreforbund, 2016a). In bouldering, the climbers often
have no safety line, but instead there may be a spotter that guides the climber to a crash pad if
he or she falls (Dansk Klatreforbund, 2016a).

Figure 3.1: Shows a climber bouldering by following a route of holds in a specific colour.

14

Chapter 3. System Choice 3.2. PACT Analysis

Rope Climbing

There is at least two types of rope climbing: sports climbing and top roping.
In sports climbing there are two people; a climber and a person who is in charge of the

security rope. During the climb, the climber attaches the rope to bolts along the route (Dansk
Klatreforbund, 2016b).

Top roping is suitable for beginners due to the low risk of injury: this is because the safety
line is always attached above the climber, which means the climber rarely falls very far (About
Sports, 2016). New climbers can thus focus on learning basic techniques and movements, instead
of focusing on attaching the rope to along the way. (About Sports, 2016).

Temporal Aspects

In AKK, the climbers have the option to climb as much as they want: “We are open 24/7
so people can, in principle, come and leave as they want” (Hornum, 2016, L. 634-635). If the
members of AKK can climb every hour of every day, it should be a requirement that the system
is also available at all times. Because the system is being developed for all members of the
climbing club and not just one person it should be able to handle multiple members using it at
the same time. It is therefore important multiple members can use the system simultaneously.
This may be relevant on club nights when there is a lot of members in the climbing club: “[. . .]
we have club nights Tuesday, Thursday, Sunday and Monday” (Hornum, 2016, L. 646-647).

Derived Requirement: Be able to handle multiple users simultaneously.

If a climber only wants to climb the best routes, some sort of rating system should be
considered. This could be designed similarly to Minimum Boulder, a climbing administration
system used in a climbing club in Switzerland (Minimum-Bouldering, 2016). Hornum describes
it: “[. . .] the nice thing about it was that then you could rate them with one to five stars [. . .].
Then you could see if you have limited time which boulder routes that are best. So then you
just climb those.” (Hornum, 2016, L. 351-355). Therefore, to create a better experience for the
members, we can take inspiration from this and derive the following requirement.

Derived Requirement: Members should be able to rate routes and see rat-
ings of routes.

Cooperation

Climbing can be a highly social activity, even though the climbing itself is done individually.
When climbing with a rope, it is necessary for another person to hold the safety line, but even
when climbing without safety gear, a spotter on the ground can still be useful by giving helpful
comments and guide the climber safely down again. In AKK, the other person is often a friend,
but climbing as a family activity also takes place there (Hornum, 2016, L.628). Hornum stated
that bouldering could be more popular than rope climbing: “[. . .] it could have something to do
with the fact that it is easier and it can be done by yourself.” (Hornum, 2016, L.164-167). This
means that bouldering is more independent, but this does not mean that climbers do not talk to
each other: “It is surprising that even though it is done individually, then it is surprisingly social.
It is very nice.” (Hornum, 2016, L.649-650). When designing a future system, it might therefore,
be an option to include social features such as sharing climbing activities among climbers, plan

15

Chapter 3. System Choice 3.2. PACT Analysis

meetings and send messages. Another social feature could be to add comments to the routes in
the system which would let members share their thoughts on a route. We asked Hornum about
this feature, to which he replied: “Yes, or a video. That could also be very cool” (Hornum, 2016,
L. 521). From this, we derived the following requirement that the system could implement.

Derived Requirement: The system could allow members to comment on
routes.

One way of cooperation between climbers is to share what is called beta: “There is a thing in
climbing called beta, [. . .] if you are going to climb and you have many problems with the route,
because you try to move your hand in a specific way, then I can come to you and then say, ’That
is because you should actually use your left hand’. Then I just gave you a beta to the route.”
(Hornum, 2016, L.497-501). A Beta is therefore some kind of hint or instruction on how to
overcome difficulties in a climbing route, which could be represented in the system by uploading
a video as suggested by Hornum: “[. . .] it could be a really cool function to be able to upload
video beta” (Hornum, 2016, L. 521). This suggestion leads us to the following requirement.

Direct Requirement: The system could allow members to add beta to the
routes.

Complexity

If we look at the complexity of creating a new route, then one of the reasons that there is no
system for the rope climbing activities may be that: “[. . .] it is more difficult to create routes
in here because you need to be held by a rope so it takes a lot more time.” (Hornum, 2016,
L. 163-164). Even though it is more challenging to create a route for rope climbing, it is still
possible to include these routes in a system.

In bouldering, it is easier to create a new route due to the lower heights where the holds can
be attached while standing on a ladder. The difficult part of creating a new route is not just to
attach the holds but also that: “[. . .] it takes a surprising amount of experience to create. If
you think, okay I want to create such a move here, so to get the hold placed right and place the
feet to fit and something like that. That is surprisingly difficult.” (Hornum, 2016, L.261-264).
In the climbing activity, the complexity is enhanced by doing very difficult moves: “[. . .] it is
often that people ask ’Is the goal to climb as fast as possible?’, but the real goal is to climb as
difficult routes as possible” (Hornum, 2016, L.102-104). If the goal of climbing is to climb the
most difficult routes then the user is not interested in routes within all grades. Therefore it
should be a requirement for the system that the user can choose a grade that fits his skill level
and view routes in that grade.

Derived Requirement: It should be possible to use the system to find routes
by grade

Safety

Because activity of climbing takes place several meters above the ground, the system can there-
fore, be seen as safety-critical. It is important that the use of the system does not distract the

16

Chapter 3. System Choice 3.2. PACT Analysis

climber from their activity. In sports climbing it is important that the climber is aware of how
to safely attach the rope, along the route. In AKK it is a requirement for members to have
taken a safety course in order to be allowed to do sports climbing (Aalborg klatreklub, 2016b).
To help prevent members that have not yet completed the safety course, from climbing a sports
climbing route, it may be rational to indicate whether a route requires a safety course to have
been completed or not.

Derived Requirement: The system must indicate if a route requires that
the climber has completed a safety course.

3.2.3 Context

During the interview, we found that the climbing club is not a commercial organisation, but rather
a club of volunteers. Therefore, it does not make a lot of sense to analyse the organisational
context of the club. Instead, we have focused on the physical and social contexts of AKK.

Physical Context

The physical context in which the mentioned activities take place, is primarily inside AKK’s
clubhouse, but sometimes AKK arranges competitions at different locations. For instance, they
recently had a competition at Aalborg Waterfront (Hornum, 2016, L.78-81). The context may
also change in the future as AKK is currently working on moving to a new building, as Hornum
states in the interview: “We are actually working on a project where we are going to move into
new buildings together with Sportshøjskolen [. . .]” (Hornum, 2016, L.63-68). Therefore, a future
system must take this into consideration and be dynamic enough to be used if AKK decides to
move their facilities elsewhere. This means that the system must be able to handle new sections
as well as editing or deleting old ones.

Derived Requirement: The system must be able to modify sections, i.e.
add, delete, edit.

For both bouldering and rope climbing, the holes for installing climbing holds have the same
distance between one another, but the holds themselves are not installed in a way that creates
straightforward routes (Hornum, 2016, L. 532-539). When asked if the routes or holds break,
Hornum answered; “No, they do not break.” (Hornum, 2016, L. 440-443). Since the holds and
routes do not break down, they are usually only maintained when the staff clear a whole section
and create new routes.

Social context

Despite the main point of coming to AKK is climbing, it is entirely possible to sit down afterwards,
relax with a cup of coffee or a small meal while talking with other members of the club. Although,
when asked if people show up at the climbing club solely for social gatherings, Hornum answered
“That is not my impression.” (Hornum, 2016, L. 638).

Being a part of a climbing club, means being part of a social community, which is built around
the interest of climbing. Because of this, it could be relevant for the members of the climbing
club to share information about routes with each other. In fact, AKK already has a social media
group on Facebook, which they use to communicate with each other. It could, therefore, be

17

Chapter 3. System Choice 3.2. PACT Analysis

relevant for the future system to be integrated with social media sites and thereby allow sharing
of routes and route information such as images. During an unstructured interview after the
second usability test (see appendix E) a member of AKK said that he wished there was a share
button, making it possible to share the image of a route he just took with people on Instagram
(see appendix E.2).

Derived Requirement: The system should be integrated with social media,
and allow easy sharing of routes and route information.

3.2.4 Technology and Current System

In the interview, Hornum informed the group that the current system consists of five whiteboards,
one for each grade. With the current system, the only way to find a route, is to look on the
whiteboard matching the route’s grade (Hornum, 2016, L.113-139). Hornum suggested that it
would be nice if it was possible to find routes based on the dates they were created, and the
section they are built in: “If you could also sort it by say, date and such. I imagine that would
be easy to implement. Also because it is important to be able to sort by section” (Hornum, 2016,
L.397-404).

To make it more efficient for users to find routes in the system, filtering and sorting routes by
their section, grade or creation-date should be possible, and we can therefore derive the following
requirement.

Derived Requirement: Users should have the ability to find routes based
on what section, or date it was created on.

“In here [the top-rope hall], we have not taken the system into use yet, since there has not
been enough motivation.” (Hornum, 2016, L.159-160). In this quote, Hornum states that the
whiteboard is only used for bouldering problems. As seen in figure 3.2, the whiteboard keeps
track of the grade of the route (colour of the wooden block at the top), the section, a number
identifying the route, name of the creator, and the date of creation All members can add new
routes to the whiteboard, but according to Hornum, it is widely accepted that members do not
change other members’ routes without permission: “One must rather not touch or adjust other
people’s routes.” (Hornum, 2016, L.252-253), (Hornum, 2016, L.285-286).

The current system was initiated by Hornum, and is the first system used in the climbing club
(Hornum, 2016, L.79-81), (Hornum, 2016, L.97-99). According to Hornum, developing an app as
the first system for AKK would be too big a change for the members. Instead he developed the
whiteboard system to use as a stepping stone for a more complex system: “My first thought was
basically that an app would be great, but I think it would be too big of a change for the climbing
club.” (Hornum, 2016, L.130-133). The current whiteboard system is written in English since
AKK has foreign members (Hornum, 2016, L.181-185).

Since the members already know how to use the current system, and its intention was to be
used as a stepping stone, we can therefore derive the following requirement from what Hornum
has told us.

Derived Requirement: The system must be able to do the same things as
the current system.

18

Chapter 3. System Choice 3.2. PACT Analysis

Figure 3.2: The current system at Aalborg Climbing Club using five whiteboards, each using
a different colour that represents the grade of the routes listed on it. Each whiteboard has six
columns: Number, section, colour of holds, creator of route, date of creation, and note.

When using the system, it is important that the members know the connection between
routes in the system and the actual routes on the wall: “[. . .] It is important to make clear
what route it is right? And one of the things are the blocks with the number. But it could also
be extremely cool if you just could upload a picture of the entire route, as we talked about, where
you could mark the holds. [. . .]” (Hornum, 2016, L. 545-548). From this we state the following
requirement.

Direct Requirement: The system should allow members to add an image
of a route.

From the final usability test, one of the people tested suggested that the system could integrate
QR-codes on the routes which could be scanned by the phone to quickly get information about
a specific route. The usability test of the person suggesting this feature, can be seen in appendix
F table F.3. From this suggestion we derive the following requirement.

Derived Requirement: Find all information about a certain route, by mak-
ing use of QR-code technologies in the coloured bricks on the wall.

AKK sometimes clear an entire section at once to make up space for new routes, and therefore
Hornum finds it problematic that routes in a specific section can be spread out on the whiteboard,
since it is sorted by grade (Hornum, 2016, L.271-273), (Hornum, 2016, L.396-399).

Hornum also finds it problematic to administrate the sections on the upper-level of the AKK

19

Chapter 3. System Choice 3.3. Requirements

building, since the whiteboard is on the ground floor (Hornum, 2016, L.390-395).
For the system to be used different places in the climbing club the system must be mobile,

and if we were to develop a mobile or web application, as Hornum suggests, the system would
require access to the Internet.

Derived Requirement: Be mobile, such that it can be used anywhere with
Internet access.

If this was to be implemented, the members of AKK would all need to have a smartphone
to access the system. As stated in table 3.1, the majority (79 percent) of the members are
aged 19-59, and according to Statistics Denmark, 75 percent of people aged 16-89 accessed the
internet through a mobile phone in 2015 (Lauterbach, 2015, p.28, figure 40). This 75 percent
would be higher, if the age group 16-89 was changed to 16-59, since younger people access the
internet more often on their smartphones and because the elder group access the internet on a
smartphone less often (Lauterbach, 2015, p.30, figure 42), (Lauterbach, 2015, p.35, figure 50).
To further support the claim that most people have a smartphone or cellphone, another survey
made by Statistics Denmark states that 77 percent of Danish households has a smartphone
and close to all households (approximately 98-99 percent) have a cellphone (Danmarks statistik,
2015). Furthermore, this tendency is also growing, e.g. the amount of households that has
smartphones has grown by more that 40 percent since 2011. From this, we can conclude that
there is a tendency that most people either have a smartphone, or have access to a smartphone
which, makes an application, and smartphones in particular, a realistic choice of technology, even
though we cannot state for certain that all members of the climbing club have a smartphone.

3.3 Requirements

According to (Benyon, 2014, 139), a requirement is ”something the product must do or a quality
that the product must have”. In this project the requirements for the system were established
through the PACT analysis, and they serve as a contract for what the system should be able to
do once the system has been fully developed.

Since the project has a time limit, decisions are made about how we prioritise these re-
quirements. The prioritising of the requirements is used throughout the different development
iterations as a tool for knowing which requirements to implement in each iteration, which ensures
that important requirements for the new system are implemented first.

The requirements were prioritised by following the ’MoSCoW Rules’ which classify the re-
quirements into one of four types of requirements (Must have, Should have, Could have, Will
not have) based on how important they are for the system (Benyon, 2010, p.150).

The requirements were first prioritised by the group members, and then with the help of
our client, Hornum, during the second interview (see appendix C). The reasoning behind the
prioritising of each requirement is described later in this section.
Below, the different ’MoSCoW rules’ are briefly described: (Benyon, 2010, p.150)

• Must have - is the essential requirements of the system. Without them, the system would
not work to the clients satisfaction.

• Should have - important parts of the system that should be included if there is time to
implement them, but the system will still be usable without them.

• Could have - are requirements that would be nice to have, but could be left out in the
current development of the system, without making the system less usable.

20

Chapter 3. System Choice 3.3. Requirements

• Want to have but Will not have this time around - requirements that are not important
for the current development of the system, and therefore will be left out to be implemented
in later development.

These MoSCoW rules were used to prioritise the requirements found in the PACT analysis.
Must have requirements. . .

• The system must be able to do the same things as the current system.

– Add, delete, edit and view routes

– View routes by grade

• The system must have the ability to show routes based on what section or date it was
created on.

• The system must be able to handle multiple users simultaneously.

• The system must be easy to use.

Should have requirements. . .

• The system should allow members to add an image of a route.

• The system should offer the ability to modify sections, i.e. add, delete, and edit.

• The system should be mobile, such that it can be used places in the climbing club where
there is Internet access.

Could have requirements. . .

• The system could allow members to add beta to the routes.

• The system could allow members to rate routes and see rating of routes.

• The system could allow members to comment on routes.

Want to have, but will not have this time around . . .

• The system will not be available in both Danish and English.

• The system will not be integrated with social media, and allow easy sharing of routes and
route information.

• The system will not support QR-codes technologies to find the information about routes.

• The system will not indicate if a route requires that the climber has completed a safety
course.

From the interview with Hornum, it was clear that the system needed to have at least the
same functionality as the current system. It also had to be able to sort and give an easy overview
of routes, since this was one of the problems of the current whiteboard system. After our first
usability test, we found that the participants had problems finding routes based on authors,
and also, the fourth participant requested a search feature, which we found to be a good idea,
since it would also be able to solve the Find Route by Author usability problem. The details of
the first usability test, can be seen in appendix D. Since there are a lot of members at AKK,
it also had to be able to handle multiple members simultaneously. Furthermore, it was also

21

Chapter 3. System Choice 3.4. Problem Statement

established that the system should be easy to use, as a must-have requirement, since the system
is being developed to be usable by all current and future members of AKK independently of
their technical knowledge.

We then looked at which requirements that were important for the system, but not essential.
These included adding an image of a specific route, as well as being able to administrate sections.
Additionally, the system should be mobile by being usable anywhere with an Internet connection.
These requirements attempted to solve some of the issues that AKK had with the whiteboard
system, such as the lack of mobility and overview of routes. However the system could still be
used without implementing these requirements, and they were therefore prioritised as should-have
requirements.

A feature that would be nice to have, was to allow members of AKK to help each other by
providing tips on how to climb a specific route, known as giving each other beta. Additionally,
being able to rate and comment routes would be a useful addition to the system. Common for
all these requirements, is the fact that they provide some extra functionality that the current
whiteboard system does not have, but was deemed relevant features for the new system, through
the PACT analysis. These requirement were all prioritised as could-have requirements since
they would be nice to have in a new system, but not not implementing them will not make the
system less usable since commenting, rating and giving beta is not directly related to route-
administration.

The last group of requirements, the will-not-have requirements, were requirements that would
be beneficial to have at some time, but not in this development period. We chose not to include
support for both Danish and English, since most users of the system already know English, and
the system will not contain a lot of text. We did not include the requirements concerning support
for QR-code and integration with social media as these requirements were discovered in the end
of the last iteration. Finally we did not choose to include the requirement that the system must
show if a route requires that the climber has completed a safety course because we do not see
this as part of the primary responsibility for the new system.

Even though all requirements would contribute with functionality to the system, they were
not deemed important enough to fit within the limited time frame of the project.

3.4 Problem Statement

From the PACT analysis, we discovered multiple requirements for the system to be developed in
this project. Based on the must-have, should-have, and could-have requirements, we delimit the
focus of this project and formulate the following problem statement:

How can we develop a mobile system that allows multiple members to easily administrate
climbing routes including associated grades, sections, images, betas, ratings and comments?

3.5 Defining the New System

From the requirements and PACT analysis in section 3.2, we start to define a new system for
administrating climbing routes in AKK. Figure 3.3 is a rich picture that illustrates the transition
from the current system at AKK, to a digitised system. In the current system, the members will
have to physically move to the whiteboard-system if they want to modify, add or remove climbing
routes. In a digitised system, the members will have the option to administrate climbing routes
through their smartphones. This means that the users of the digitised system are not limited to
one specific place where they can use the system as is the case with the current system.

22

Chapter 3. System Choice 3.5. Defining the New System

Figure 3.3: Rich picture that illustrates the transition to a digitised system.

From our MoSCoW analysis, we can create a System Definition and the corresponding FAC-
TOR analysis, which describes what system we are going to develop in this project.

3.5.1 System Definition

An IT system for administrating climbing routes at AKK using a smartphone connected to the
internet. The system lets members of the climbing club easily administrate routes by adding,
removing, and changing them in the system. Furthermore, members can rate, comment, and
provide beta to a climbing route. They can also add a note to a route and submit a picture for
a route. All routes are located in sections which are controlled by members, who can add, clear,
rename and remove an entire section of routes. Members of the climbing club can get an easy
overview of the provided information about each route.

3.5.2 FACTOR Analysis

A FACTOR analysis is tied to the system definition and consists of six elements: Functionality,
Application domain, Conditions, Technology, Objects, and Responsibility. The elements in a
FACTOR analysis should be derived from the system definition, and therefore the process of
making the FACTOR analysis and the system definition is an iterative one. It is iterative
because we check our system definition against the FACTOR until all elements in the FACTOR
is represented satisfactory.

F Add, edit, view, remove sections and routes
Add comments, rating, images and videos, as well as beta and a note, to routes

A Members of the club can administrate routes and sections
Guests can view routes

23

Chapter 3. System Choice 3.5. Defining the New System

C Must be usable in a climbing room
Easy to use by members and guests of the climbing club

T Runs on smartphones
Requires internet connection

O Sections, routes, member, rating, note, beta and comment.

R An IT system for administrating climbing routes in the AKK.

Summary

In this chapter, it was explained how and why a semi-structured interview with a member of AKK
was conducted. From this, it was possible to create a PACT analysis of the people, activities,
context, and technology of AKK. From the PACT analysis, AKK was found to be a climbing club
with 269 members that differs in gender, age, and nationality. Furthermore, AKK has two types
of climbing: rope climbing and bouldering, which are located in separate halls. Knowledge about
how AKK currently keep track of their bouldering routes on five whiteboards, was obtained.
Throughout the PACT analysis, two types of requirements were specified: derived and direct
requirements. The direct requirements included the features that the clients explicitly stated
they would like in a future system, while the derived requirements included those that could
be derived through the PACT analysis. The requirements were prioritised using the MoSCoW
rules. From the requirements and PACT analysis, a problem statement specifying the problem
that needed to solved be in the future system was made. The transition of AKK’s current system
to a digitised version of it was illustrated using a rich picture. Lastly, a system definition which
specified the system to be developed, was made.

In the next chapter, we will continue on to the next step in the OOA&D method, which is
the problem-domain analysis, where we will do the Classes, Structure and Behaviour activities.

24

Chapter 4

Problem-domain Analysis

In this chapter the problem domain is modelled, based on the system definition and the in-
formation obtained in the PACT analysis in section 3.2. The modelling is done by identifying
classes and events in the problem domain. From these, an event table, which illustrates how
the different classes and events are connected, is created. The classes and their attributes are
then structured in a class diagram, which illustrates the relations between them in the problem
domain. Using the information contained in the event table, behaviour diagrams for each class
are created, which illustrates how events affect the specific classes.

4.1 Classes Activity

The first part of the problem-domain analysis is the Classes Activity, where classes and events
are analysed in order to help understand the problem domain.

4.1.1 Selecting Classes

After doing a PACT analysis and analysing the requirements for the new system, it is possible to
begin looking at which classes were necessary to model the problem domain in the new system.
According to Mathiassen et al. (2000), the problem domain is the part of a context that is
administrated, monitored or controlled by a system.

A class is a collection of objects that have the same behaviour, attributes, and structure
(Mathiassen et al., 2000, 49). To identify these classes, a brainstorm was conducted using the
knowledge gained through the PACT analysis and the interview with Mattias Hornum (2016).
Afterwards, we excluded some of the classes based on the system definition, and by following
four criteria for selecting classes from Mathiassen et al. (2000, p.61) which can be seen below.

• Can you identify objects from the class?

• Does the class contain unique information?

• Does the class encompass multiple objects?

• Does the class have a suitable and manageable number of events?

Below is a list of suggested classes found after brain-storming. The classes that have not been
crossed out represent the selected classes used to model the problem domain.

25

Chapter 4. Problem-domain Analysis 4.1. Classes Activity

Classes
Member Top-roping route
Admin Route
Guest Club
Comment Grade
Section Rating
Bouldering route Map
Sports-climbing route Beta
Text Hold

Table 4.1: Suggested Classes for the new system. Classes that were discarded at a later time,
are crossed out.

Discarded classes

The three classes Bouldering route, Top-roping route, and Sports-climbing route were all
combined into a single Route class, since Hornum told us that there were no differences between
the different types of climbing in their current system and thus no reason to model it (Hornum,
2016, L.213). We removed the Club class because of the third criterion since we only focus on
AKK in this project and not several climbing clubs. The Map class was removed since it is not a
part of the system definition.

The classes Guest and Admin, were removed since we do not need to administrate, monitor,
or control these classes in the problem domain. We removed text as it has much in common
with the Comment class.

Describing selected classes

A Member is a person that is a part of the climbing club. A Member climbs routes, adds comments,
rates routes and provides other people with beta to routes. A Member can also add additional
routes to the system, as it is the members of the club who creates routes in AKK.

A Section describes a physical area within the climbing club. Each Section is identified by
a single letter, and at the time of writing there are four Sections in AKK: A, B, C, and D. Each
Section contains several Routes, but a Section without Routes can exist, e.g. when a Section

is cleared of all Routes.
A Route describes a climbing route in the climbing hall. A climbing route consists of a

number of Holds located somewhat close to each other in a Section of a climbing wall. The
beginning of a Route is marked on the climbing wall by a small coloured wooden square with a
number written on it. A coloured square marks the Grade and number of the route. The Grade

and number is what uniquely identifies a Route.
A Hold is an integral part of a Route and climbing in general. It is a coloured chunk of plastic

screwed into a climbing wall that climbers can grab and stand on. They come in a multitude of
colours, and a route follows a specific set of Holds indicated by colour. If routes using the same
colour Holds are placed too close to each other, coloured tape can be used to indicate which
Route a Hold belongs to.

Beta is information that describes how to climb a specific route. For instance, if one climber
finds a specific route difficult to complete, another climber can explain how to perform a certain
move during the route and thereby provide beta for the route (Hornum, 2016, L.497-501).

A Grade is a colour that denotes the grade of a Route where each Grade represent different
difficulties. It is the member that creates a Route that determines the Grade of a Route. AKK
have at the time of the writing five different grades: green, blue, red, black, and white.

26

Chapter 4. Problem-domain Analysis 4.1. Classes Activity

A Comment is an opinion that a Member has of a specific Route, which the Member shares with
one or more Members.

A Rating represents a score given by a Member that describes how good a Route is according
to that Member.

4.1.2 Selecting Events

During the brainstorm we also found possible events that, along with the classes, could be used
to describe the problem domain further. An event is an instantaneous activity that involves one
or more objects and is used to describe how classes can behave (Mathiassen et al., 2000, p.49).

Just like with the classes, we started by brainstorming events and then excluded that on the
following three criteria from Mathiassen et al. (2000, p.63)

• Is the event instantaneous?

• Is the event atomic?

• Can the event be identified when it occurs?

The events, before and after the critical selection, can be seen in table 4.2. The discarded
events are crossed out.

Events
Uploaded Section added
Signed in Section cleared
Signed out Section removed
Signed up Grade created
Route climbed Route commented
Route created Route rated
Comment removed User deleted
Route removed Beta given
Hold created Beta removed
Hold removed Member signed up
Grade removed Member resigned
Grade created

Table 4.2: Suggested events for the new system. Discarded events are crossed out.

Discarded Events

The events Uploaded, Signed in, Signed out, Signed up, and Deleted user were not used, since we
realised that they, like the classes Guest and Admin, were not part of the problem domain nor
the system definition. The event Route climbed is part of the problem domain because a Member

can climb a route, however we did not choose to monitor this in the system. Therefore, the event
has been crossed out.

The selected events, has been identified from the system definition, requirements, and the
above criteria.

27

Chapter 4. Problem-domain Analysis 4.2. Structure Activity

Event Table

After having found the classes and events, we constructed an event table that illustrates which
events affects which classes. The event table can be seen in table 4.3. The table was revised after
we had finished the Behaviour Activity, to include information about how often an individual
event can have an impact on a specific class.

Classes
Events Section Route Rating Comment Beta Member Grade Hold
Route rated ∗ + ∗
Route created ∗ + ∗ ∗ +
Route removed ∗ + + + + ∗ +
Section added +
Section removed + + + + + ∗ +
Section cleared ∗ + + + + ∗ +
Route commented ∗ + ∗
Comment removed ∗ +
Beta given ∗ + ∗
Beta removed ∗ +
Member signed up +
Member resigned +
Grade created +
Grade removed ∗ + + + + + +
Hold created ∗ +
Hold removed ∗ +

Table 4.3: Event table. A plus (+) means that the event can effect a class zero or once, while
an asterisk (∗) means that the event can affect a class zero or multiple times

The event table as seen in table 4.3 helped to give an overview of the relations between
classes and events. This overview can now be used to describe the structural relationships
between classes and objects in the problem domain.

4.2 Structure Activity

This section describes the structure of the classes in the system. From the classes and events
found in section 4.1.1 and section 4.1.2, we construct a class diagram with attributes, as seen in
figure 4.1.

28

Chapter 4. Problem-domain Analysis 4.3. Behaviour Activity

1

0..*

1 0..*

1

1..*

1

0..*

1

0..*

1

0..*

0..* 1

0..*

1

0..*

1

0..*

1

Section

Name

Route

Number
Note

Member

Name

Grade

Colour

Rating

Value

Beta

Description

Comment

Description

Hold

Colour

Figure 4.1: Class diagram for the future system. The attributes of the individual classes are
values belonging to the objects of the classes, and are used to characterise and identify them.

Since the climbing club requires routes for the climbers to climb, and those routes cannot exist
without sections, each Section aggregates zero or more Routes, and each Route aggregates zero
or more Holds. The structural relations between Section, Route, and Hold is called a hierarchy
pattern because of the hierarchical structure of these classes (Mathiassen et al., 2000, 82). As
modelled in the current system at AKK, each Route has a relation to a single Grade and a Grade

aggregates zero or more routes. A Route also aggregates zero or more Ratings, Comments and
Betas. This structure was chosen because it does not make sense for either of Rating, Comment,
and Beta to exist independently of the specific route.

Looking at the class diagram in figure 4.1, we can see that until a user adds a Rating,
Comment, or Beta to a route, there is no real change from the current system.

4.3 Behaviour Activity

After creating the class diagram for the structure of the classes in the problem domain, we move
on to make state diagrams based on the selected classes and events found in section 4.1.1 and
section 4.1.2 respectively. A state diagram illustrates the behavioural pattern of a class, which
is a definition of potential event traces that may affect a class until it changes state and ceases
to exist as an active object in the system (Mathiassen et al., 2000, p.89-90).

4.3.1 Section

A Section object is added to the system once it is affected by the Section added event. When
a Section is in the system, Routes can be added to the Section, which does not change the
state of the Section object, but merely makes it contain more Routes. These Routes can either
be deleted individually by the Route deleted event or all routes in a section can be removed by
the Section cleared event. Clearing a Section will not change the state of the Section object,

29

Chapter 4. Problem-domain Analysis 4.3. Behaviour Activity

nor will it be deleted. The Route deleted, Route added, and Section cleared events can therefore
occur multiple times on the Section object. The section will cease to exist when it is affected
by the Section deleted event. The modelled behaviour is shown in figure 4.2.

ActiveActive

Section added

Section deleted

Route created(date)

Route removed

Section cleared

Grade removed

Figure 4.2: State diagram for a section object.

4.3.2 Route

A Route is added to the system when it is affected by the Route added event. Once a Route is
in the system, other users can Comment on it, rate it and add Beta to the Route in the form
of comments or videos; these events can occur multiple times on a route object, but does not
change the state of the object. A Route will cease to exist if the Section it belongs to is deleted
or cleared, or if the Route itself is deleted. The state diagram for the Route can be seen on figure
4.3.

ActiveActive

Route created (Date)

Route removed

Section cleared

Section removed

Grade removed

Beta given
Beta removed

Route commented

Comment removed

Hold created

Hold removed

Route
Rated

Figure 4.3: State diagram for a route object.

4.3.3 Rating, Hold, Comment, and Beta

When a user rates a Route object, the Route rated event causes the creation of a Rating object.
This rating will continue to exist until the route is deleted in either of the possible scenarios

30

Chapter 4. Problem-domain Analysis 4.3. Behaviour Activity

previously described. This behaviour can be seen in the state diagram for Route in figure 4.4

ActiveActive

Section cleared

Route rated

Grade removed

Route removed

Section removed

Figure 4.4: State diagram for a rating object.

The only difference between the behaviour of Comment, Hold, Beta and Rating, is the events
that trigger the creation and deletion of the instances of these classes. The behavioural diagrams
for these classes has therefore been places in appendix H.1.

4.3.4 Member

The Member object is constructed when a Member is added. A Member can add routes, Comment
on them, and add Beta as well as add a Rating to the route. The Member object is deleted when
the Member deleted event is called on the object.

ActiveActive

Member signed up

Member resigned

Route created(date)

Route commented

Beta given

Route rated

Figure 4.5: State diagram for a member object.

4.3.5 Grade

The Grade object is instantiated and added to the system when the Grade added event occurs.
The behavioural pattern for the Hold object is almost similar to that of the grade object,

and can therefore be seen in appendix H.

31

Chapter 4. Problem-domain Analysis 4.3. Behaviour Activity

ActiveActive

Grade added

Grade removed

Route created(date)

Route Removed

Section removed

Section cleared

Figure 4.6: State diagram for a grade object.

Summary

To model the problem domain, the following classes were identified and selected: Section, Route
, Rating, Comment, Beta, Member, Grade and Hold. To achieve a better understanding of the
behaviour of these classes, different events were identified and listed in table 4.2. In order to
show how the different classes and events were associated, an event table was created, as seen in
table 4.3. The event table was also created to better understand how many times specific events
could affect specific classes, which the class diagram was then updated to reflect.

The knowledge gained from the problem-domain analysis helped identify and describe the
actors and use cases in the application-domain analysis, as described in the next chapter.

32

Chapter 5

Application-domain Analysis

In this chapter, the application domain is analysed. The first step of doing so, is determining
who and what interacts with the system, including people and other systems. These are called
actors, and actor specifications that describe their goals and characteristics are created for each
one. Each actor specification also contains examples of these who these actors are and how they
interact with the system.

After defining the actors, the ways in which they interact with the system will be described
in detail by specifying use cases. This is done by by using the affected objects and functions,
to create statechart diagrams that illustrate how different interactions change the state of the
system. Combining the actor and use case specifications allows for the construction of an actor
table, showing which use cases can be performed by which actors. Using the system definition,
problem-domain analysis and use cases, the different functions of the system are determined and
their type and complexity is ordered in a table.

5.1 Actors and Use Cases

In this section, we describe actors and use cases in the application domain. The actor is an
abstraction for people, systems, or other entities that interact with the system (Mathiassen
et al., 2000, p.119). A use case is a pattern for how the system and actors interact with each
other (Mathiassen et al., 2000, p.119). The result of this section will be an actor table and state
diagrams for all use cases.

5.1.1 Actor Specifications

In analysing the application domain, we came across three different types of actors: climbers,
setters, and administrators. These three actors all use the system in different ways, but do not
necessarily describe separate people: it is entirely possible for a single person to take on the role
of more than one actor. Following is an in-depth description of each actor.

In the actor specification 5.1, the most prominent actor, the climber, is described. A climber
is any person who uses the club for climbing, and while most of these actors are the people who
frequents the club, one-time guests are climbers as well. This will be the most common actor in
the system.

33

Chapter 5. Application-domain Analysis 5.1. Actors and Use Cases

Climber

Goal: A person using the climbing club needs to be able to get an overview
of climbing routes as well as a detailed description of each route. A climber’s
main goal is to find and climb routes. Climbers may also show other climbers
how to climb a route by recording a video beta demonstrating certain move-
ments along the route. Finally, a climber may want to express their opinion
about a route by commenting or rating the route.

Characteristics: Generally, climbers are members of the climbing club,
which means that the full diversity of members in the club is represented in
this group of actors. From the PACT analysis in section 3.2, we know that the
members are in the ages of 10 to 60 years old and that there is a slight gender
bias towards men. Climbers that provides beta are most likely experienced
climbers.

Examples: Climber A is a 24-year-old member of the climbing club
who visits it once every two weeks. He has two years of experience with
climbing and is mainly interested in using the system to figure out which
routes, if any, have been created since his previous visit. This means that
he only uses the system to get an overview of routes, by sorting them by date.

Climber B is a 16-year-old first-time visitor of the climbing club. She does
not have any experience in climbing and, therefore, does not have any
knowledge about the different gradings or how to best climb a route. She
wants to find routes that fits her beginner level as well as basic instructions
on how to climb a certain route.

Climber C is a 42-year-old veteran climber who enjoys climbing difficult
routes, especially those made by his good friends. He is interested in find-
ing routes of a certain grade that are also made by specific members of the
club. Furthermore, he enjoys rating the routes that his friends have created.
Because he is a very skilled climber he also helps other members with both
difficult and simple routes by leaving beta for them to see.

Actor Specification 5.1: The Climber actor.

The second actor described in actor specification 5.2 represent the people setting, editing or
deleting routes in the system.

34

Chapter 5. Application-domain Analysis 5.1. Actors and Use Cases

Setter

Goal: A member of the climbing club, who creates or sets routes for climbers
and enters the route information in to the system is a setter. A setter’s main
goal is to create routes, both in the real world, but also in the system. If an
existing route changes, or a mistake was made when entering the route in the
system, a setter is also able to edit existing routes.

Characteristics: While a setter technically can be any member of the
climbing club, creating new routes requires a level of expertise only experi-
enced climbers have. As mentioned in section 3.2, creating a route requires
plenty of climbing experience in order to place each holds in a way that makes
the climber of the route, do a specific move.

Examples: Setter A is a 38-year-old veteran member of the club with nine
years of climbing experience. He also has extensive knowledge about setting
routes, which he does on a regular basis. He uses the system to add these
routes to the system.

Setter B is a 26-year-old member of the club, who recently started creating
her own routes. As she is relatively inexperienced in route creation, she has
a tendency to misjudge the grade of her routes. This means that she uses the
system, not only to add her routes, but also to occasionally edit the routes
she previously added.

Actor Specification 5.2: The Setter actor.

Lastly, in actor specification 5.3, the most privileged actor of the system, the administrator
is described. This will most likely be the smallest group of actors. A reasonable choice for
administrators would be the elected board members of AKK.

35

Chapter 5. Application-domain Analysis 5.1. Actors and Use Cases

Administrator

Goal: A member of the climbing club, who helps administrate it, by being
in control of sections and all the routes they contain. The main goal of an
administrator is to apply changes to the available sections, grades and routes
in the system.

Characteristics: Only a few members of the climbing club are administra-
tors. Administrators are most likely long-time members or board members
of the climbing club. It is likely that people that acts as administrators also
acts as climbers and setters in the system.

Examples: Administrator A is a 31-year-old veteran, a long time member
of the climbing club and part of the board. When the club clears a section of
all routes every two months, Administrator A uses the system to delete all
routes in the section.

Administrator B is a 49-year-old long-time member of the climbing club. He
rarely uses the system as he would rather leave the task of administrating
sections, grades and routes to other administrators. Administrator B prefers
only to use the system if it is necessary.

Actor Specification 5.3: The Administrator actor.

5.1.2 Use Case Specifications

This section aims to describe different use case specifications for the new system. The goal of
this activity is to find use cases as described by (Mathiassen et al., 2000, p. 127): “The goal is
to collect the many possible ways of using the target system in a few well-chosen use cases”.

Authenticating

From the structure activity in section 4.2, we know that a Member is associated with a Route,
Beta, Comment, and a Rating. To model these associations in the system, we choose to identify
Members in the system. To do this, we need to authenticate users of the system. Authentication
is also used to restrict access to certain functions of the system. For this reason, we want to
authenticate users when they first try to access such functionality. The Authenticating use case
describes how an unauthenticated user becomes an authenticated Member.

36

Chapter 5. Application-domain Analysis 5.1. Actors and Use Cases

Authenticating

Use Case: Authentication is possible for anyone who is not already au-
thenticated. It starts when the actor tries to access a function that is only
usable for authenticated users. The users are sent to the Log in page. Here,
the actor can enter their user credentials and press the Log in button which,
if the credentials are valid, sends the actor on to their intended destination.
If the log in fails, the actor will be prompted to try again. If the actor does
not yet have a login, they can click the Register button. This sends the actor
to the Register page where the actor can create a user in the system. After
successfully creating a user, the actor is sent to their intended destination.

Objects: Climber, Setter, Administrator, Member.

Functions: Log in, Log out, Register member.

Use Case 5.1: Describes how a user goes from the unauthenticated state to an authenticated
state.

Figure 5.1 shows the statechart diagram for the Authenticating use case. In the following
statechart diagrams for the different use cases the black dot indicates where the use case is
initiated, and the black dot surrounded by a circle describes when the use case is terminated.

AuthenticatingAuthenticating

Log in pageLog in page Register pageRegister page

Access function - not authorised

Log in Sign up

Continue to function

Access function - not authorised

Enter username

Enter password

Register pressed

Cancel

Enter username

Enter password

Figure 5.1: Statechart diagram for the use case Authenticating.

37

Chapter 5. Application-domain Analysis 5.1. Actors and Use Cases

Viewing Route Information

The Viewing route information use case, is the activity of finding information about a route. For
most of the users, especially climbers, this will be the key functionality of the system. The actors
for this use case are Climbers, Setters and Administrators. The Viewing Route Information use
case describes how an actor accesses information about specific routes, and how they can make
use of filters, searching, and sorting options to help find the wanted route.

Viewing Route Information

Use Case: Viewing Route Information is available to all actors. It is
initiated by an actor that accesses the Find route page that lists all routes.
The actor can choose to filter routes by section or grade and sort by rating,
newest, oldest, grade or author. Actors can also choose to input a string into
a search-field, which allows the actor to find all routes which have a certain
relevance to the string they are searching for.
At the Find route page the user can select one of the routes which will navigate
them to the Route information page that shows all the available information
about a specific route including average rating, comments, and beta.

Objects: Climber, Setter, Administrator, Section, Route, Grade, Comment,
Beta.

Functions: Get list of routes, Sort routes, Search for routes, Filter routes,
Get route information, Calculate average rating, Get route comments, Get
route beta.

Use Case 5.2: Describes how to find and view information about a route.

As described in section 3.3 the new system must be easy to use, have the same functionality as
the predecessor, and enable users to find routes by section, grade, and date of creation. This use
case is related to these requirements by digitising the current whiteboard system and providing
filtering, searching, and sorting capabilities to make it easy to find routes.

The statechart diagram in figure 5.2, shows the different states the system can be in, and
how the actions performed by the actors changes the state of the system.

38

Chapter 5. Application-domain Analysis 5.1. Actors and Use Cases

Viewing Route InformationViewing Route Information

Showing RoutesShowing Routes

Displaying Route InformationDisplaying Route Information

Filter by section

Filter by grade

Sort routesSearch

Select routeReturn

Close

Open route

list page

Figure 5.2: Statechart diagram for the use case Viewing Route Information.

Adding/Editing Route

This use case describes the activity of adding new routes to the system and helps fulfil the
requirement that the system must have the same functionality as the previous.

Adding Route

Use Case: Adding a route is possible for the actors administrator and setter.
The use case is initiated by one of these actors when they open the Add route
page. If the actor chooses to add a new route, the system provides input
fields for entering information about the new route. This includes the section
that the route belongs to, the grade of the route, the number identifying
the route, and the colour of holds. It is also possible to select whether the
holds have tape on them or not, by pressing a button which changes the
holds to include tape. There are no requirements for the order in which this
information should be entered.

Objects: Administrator, Setter, Route, Section, Grade, Hold.

Functions: Add route, Get sections, Get grades, Get hold colours.

Use Case 5.3: Describes how to add a new route.

Figure 5.3 shows the statechart diagram of the use case Adding Route. Because there are no
requirements for the order in which different types of information about the route are entered,
then this use case follows the material pattern. The material pattern is a use pattern which is
characterised by having little sequence, meaning that the actors have very few limitations in the
order in which they perform action. For this use case, the actor can e.g. select grade, colour

39

Chapter 5. Application-domain Analysis 5.1. Actors and Use Cases

of holds, section, or enter route number in an arbitrary order. The material pattern is used
in situations where no rules limit the way an actor can perform a specific use case. The only
difference between adding a new route and editing an existing one, is that the page will already
have the current section, grade, hold colour selected, and route number assigned to it, all which
can be changed. The Editing Route statechart diagram can be seen in figure H.2 in appendix H.

Waiting For Route InformationWaiting For Route Information

Open add route page

Save

Select section

Select grade Select colour of holds

Select colour of tape

Enter route number

Figure 5.3: The statechart diagram for the Adding Route use case.

Adding Additional Route Content

After a route is added, additional content can be attached to the route. This includes ratings,
comments, and betas. This use case is based on the could-have requirements in the MoSCoW
analysis in section 3.3.

Adding Additional Route Content

Use Case: Adding additional route content is possible for administrator,
Setter and climber. This use case is initiated by an actor that accesses the
Route Information page. At this page, the actors can rate the route by
selecting a score ranging from one to five. The actors can also enter a comment
that will be shown below the route information. Finally, the actors can choose
to add beta by selecting a video from their device.

Objects: Administrator, setter, climber, route, beta, comment, rating.

Functions: Add rating, Add beta, Add comment.

Use Case 5.4: Describes how actors can add a rating, comment and beta to a specific route.

Ratings can then be used by climbers to quickly find a route that other climbers liked.
Comments can be used to discuss and share thoughts about a route. Finally, beta lets climbers
who are signed in, share image or video that shows how to climb the route. Use case 5.4 is
illustrated with a statechart diagram in figure 5.4.

40

Chapter 5. Application-domain Analysis 5.1. Actors and Use Cases

Adding Additional Route ContentAdding Additional Route Content

Showing Route InformationShowing Route Information Waiting for BetaWaiting for Beta

Select route

Close

Rate

Comment

Add beta

Cancel

Select beta

Figure 5.4: Statechart diagram for Adding Additional Route Content.

Administrating Sections

Use case 5.5 shows the Administrating Sections use case. This use case describes how an admin-
istrator can control sections by adding, renaming, deleting, or clearing a section. This use case is
related to the requirement that the system should be able to handle new sections, meaning that if
the physical environment of the climbing club changes, the system should enable administrators
to add a new section. This will become important if AKK moves to new buildings.

Administrating Sections

Use Case: Section administration is initiated by an administrator when
the Administration page is opened. The system will then list all the sections
in the climbing club. The actor can then choose between four actions: add a
new section, change the name of a section, clear a section, or delete a section.
If the actor wants to add a new section or change the name of an existing
section, then the system prompts the user to enter the name of the section.
The actor now has the option to add a name or just cancel the requested
action. If the administrator chooses to delete or clear a section, then the
system will inform the user that all routes within the section will be removed.
The actor can then confirm or cancel the requested action.

Objects: Administrator, Section, and Route.

Functions: Add section, Clear section, Delete section, Change section
name.

Use Case 5.5: Describes how actors can add, rename, clear and delete sections.

41

Chapter 5. Application-domain Analysis 5.1. Actors and Use Cases

The Administrating Sections use case is illustrated in figure 5.5 and follows the material
pattern to perform different actions on sections.

Section AdministrationSection Administration

Showing All SectionsShowing All Sections

Waiting for Section NameWaiting for Section Name

Waiting for ConfirmationWaiting for Confirmation
Open

Change NameAdd Section

Enter NameCancel

Clear

Cancel

Close

Select section

Confirm

Delete

Figure 5.5: Statechart diagram for the use case Administrating Sections.

Deleting Route

Use case 5.6 explains how a setter or administrator can delete a specific route from a section in
the system.

Deleting Route

Use Case: Deleting a route is possible for two actors: administrators and
setters. On the Route Information page, the actors can delete the route. If
they choose to do so, they will be prompted with a confirmation box with
OK and Cancel buttons so that they do not delete the route by accident.

Objects: Administrator, Setter, Route.

Functions: Delete route.

Use Case 5.6: Describes how actors can delete a route.

The statechart diagram for the use case Deleting a Route is shown on figure 5.6.

42

Chapter 5. Application-domain Analysis 5.1. Actors and Use Cases

Deleting RouteDeleting Route

Showing Route InformationShowing Route Information Waiting for ConfirmationWaiting for Confirmation

Select route

Confirm

Close

Delete

Cancel

Figure 5.6: Statechart diagram for the use case Deleting Route.

Adding Image to Route

Based on the requirement that the system should allow members to add an image of a route,
a use case for adding image to a route was introduced. Additionally this use case allows the
climber, setter, and administrator to mark where the holds of a route are located on an image
of the route.

Adding Image to Route

Use Case: When viewing route information, it is possible to add an image
to a route. When choosing to add a new image, the actor has to choose
whether to choose an existing photo, or to take a new one with their phone.
After the image has been chosen, the actor can click on the holds on the image
so that the system can draw the route on top of the image to make it easier
for climbers to identify the route.

Objects: Climber, administrator, setter, Route, Image, Hold.

Functions: Add image, Add holds, Delete latest added hold.

Use Case 5.7: Describes how to add image to a route.

43

Chapter 5. Application-domain Analysis 5.1. Actors and Use Cases

Choosing imageChoosing image

Taking picture with cameraTaking picture with camera Choosing image from phoneChoosing image from phone

Image chosenImage chosen

Take picture Choose file

CancelCancel

Picture taken Image chosen

CancelCancel

Press “Add image”

Accept

Cancel

Add hold

Delete latest added hold

Figure 5.7: Statechart diagram for the use case Adding Image to Route.

5.1.3 Actor Table

Table 5.1 shows the link between the identified actors and identified use cases. The table shows
which actors can perform which use cases.

Actors
Use Cases Climber Setter Administrator
Viewing Route Information (*) X X X
Adding Additional Route Content X X X
Adding Image to Route X X X
Authenticating X X X
Adding Route X X
Edit Route X X
Delete route X X
Section administration X

Table 5.1: Actor table. The asterisk indicates that a use case does not require authentication

As can be seen from the table the use case Viewing Route Information does not require that
the actors is authenticated in the system. The reasoning behind this choice, was that we did not
want to force users of the system to login if they just wanted to find or get an overview of routes.

44

Chapter 5. Application-domain Analysis 5.2. Functions

5.2 Functions

In the following section, we determine the functions of the new system and summarise them in
a table, showing the category of each function as well as their complexity.

5.2.1 Defining Functions of the System

In this section, we describe functions for the system based on the use cases described in section
5.1.2. We categorise all the functions into three groups of functions, which are read, update, and
compute functions. For each function, we also estimate how complex the different functions will
be to implement. The result is a list of all primary functions in the system, which will show the
type and complexity of each function.

Read functions

The first type of functions to be identified are read functions. The fact that these functions
can read and return the current state of the model of the problem domain is what they have in
common. From the use cases, we can identify the functions that receive information which are the
following get-functions: Get list of routes, Get route information, Get route comments,
Get route beta, Get grades, and Get sections. All these functions, except Get route beta

, are simple because they only read and return text based information. Get route beta is
estimated to have medium complexity because it requires the function to read and return videos
which might be more difficult to handle than simple text-based information.

Update functions

The second type of functions are update functions which change the state of the model. This
includes the following functions that add or update objects to the model: Add route, Add hold

, Update route, Add beta, Add section, Add rating, Add comment, and Register member

. These add functions, except Add beta, are estimated to be simple functions to implement,
whereas the Add beta function is estimated to be complex because it is more challenging to
handle video input than simple text input. In contracst to these add functions are the update
functions that clear or delete data from the model: Delete route, Delete latest added hold,
Delete section, and Clear section. These functions are categorised as medium complexity
as they change the state of multiple classes. When a Section is deleted, it deletes all the Route

s contained within that Section and deleting a Route deletes all the additional content such
as ratings, comments and betas. Furthermore, the function Change section name is simple
to implement because it only updates a single attribute of a section object. The Add image

function is estimated as medium as it might be challenging to add an image depending on how
the data is stored.

Compute functions

The third type of functions are compute functions which perform some calculation in the system.
In our system, there are four compute functions: Sort routes, Filter routes, Calculate
average rating and Search for routes. Sorting a list of items is a common computational
problem inside computer science, and therefore there exist several implementations that we can
use to sort a list of routes. From this we estimate this function to be simple to develop, which
is also the case for Filter routes.

45

Chapter 5. Application-domain Analysis 5.2. Functions

The third function is Calculate average rating that will be presented to the user together
with other route information. This function is also simple as it just calculates the average rating
for a specific route using simple math.

The last function, Search for route, requires a working search function that searches
through each route and their properties to give back a result that best matches the input string.
There exists algorithms that can do this, such as Levenshtein, which is an algorithm that we
can use to compute the distance which is the similarity between the inputted string, and each
route in the model (Allen, 2016). Levenshtein along with other possible methods for our search
function will be described in section 8.1.5. The routes can then be sorted by the lowest distance
value, which means the routes will be sorted by which routes closest matches the inputted search
string, then returned to the caller of the function. Unlike the other functions, we did not know
that search functionality was necessary until the first usability test, so this requirement has been
derived from appendix D. Even though that searching is a well defined task which can be imple-
mented with the use of already existing algorithms it is still a complex function, since we must
take into consideration different search criteria as well as computational time in order to make
the search function.

To implement authentication as described in use case 5.1 we need the two functions: Log in

and Log out, which is used to authenticate different actors in the system. These functions have
simple complexity under the assumption that we choose a technical platform that already has
functionality for authenticating users.

5.2.2 List of Functions

From the previous section, we now combine a list of all read, update and compute functions as
shown in table 5.2.

46

Chapter 5. Application-domain Analysis 5.2. Functions

Functions

Get list of routes Simple Read
Get route information Simple Read
Get route comments Simple Read
Get route beta Medium Read
Get grades Simple Read
Get hold colours Simple Read
Get sections Simple Read
Add route Medium Update
Add beta Medium Update
Add section Simple Update
Add rating Simple Update
Add comment Simple Update
Add image Medium Update
Add grade Simple Update
Add holds Simple Update
Delete route Medium Update
Delete grade Simple Update
Delete latest added hold Simple Update
Delete section Simple Update
Clear section Medium Update
Change section name Simple Update
Register member Simple Update
Swap grades Simple Update
Sort routes Simple Compute
Filter routes Simple Compute
Calculate average rating Simple Compute
Search for routes Complex Compute

Calculate distance Complex Compute
Sort routes by distance Simple Compute

Log in Simple Compute
Log out Simple Compute

Table 5.2: List of all functions’ name, complexity and type.

Summary

In this chapter three types of actor were identified: climber, setter, and administrator. The
primary goal of the climber was described as being able to find, rate, view, and add beta to a
route. Setters were specified as actors who use the system to create, remove, and edit routes.
Finally, the administrator was specified as an actor with the goal of managing routes and sections
in the system.

Seven use cases were identified in the in the system and specified in use case specifications:
Authenticating, Viewing Route Information, Adding Route, Adding Additional Route Content,
Adding Route Image, Delete Route, and Section administration. An actor table, as seen in table
5.1, was created to illustrate which actors could perform which use cases. Lastly, read, update,
and compute functions were identified in the system, as showed in table 5.2.

47

Chapter 5. Application-domain Analysis 5.2. Functions

Having obtained knowledge of which actors and use cases were present within the system, it
became possible to formulate and design the architectural design of the system, as described in
the following chapter.

48

Chapter 6

Architectural Design

In this chapter, the architectural design of the system is in focus. First, common criteria for
system architecture is looked at and then prioritised according to the established requirements
of the system. Then the the choice of which environment to develop in and frameworks to use,
is made. The overall architecture layers and components in the system is explained, with the
components being described in detail. Specifically, which classes each component consists of.
Using the class diagram and event table from chapter 4, the model component, where events are
represented by attributes and new classes, is constructed. The information flow of the system is
then illustrated, and finally, the connection between different classes in the components is shown
in order to illustrate the dependencies between the components and layers of the system.

6.1 Criteria

In this section, we describe each criterion and explain how important it is for our system, then
summarise the section with a table showing the same information for a quick overview of each
individual criterion’s importance.

6.1.1 Prioritising

To figure out what criteria need the most focus, we use a checklist from Object Oriented Analysis
& Design (Mathiassen et al., 2000, p.185).

Each criterion is rated on a scale from very important to irrelevant as well as an easily fulfilled
option, based on how important they are in the system. The reasoning for the prioritising of the
requirements is based on the requirements found in 3.3. Each criterion will be briefly described
and given an explanation for their prioritising in table 6.1.

Usable

Can the system be used by the user in the desired context to solve their problem? Based on
the requirement that the system should be easy to use, we rate this criterion as ’very important’,
since the two are closely related.

Secure

How important is it that the system is secure against unauthorised access? In our system,
we do not have any sensitive personal information, except for passwords, that can be lost, nor

49

Chapter 6. Architectural Design 6.1. Criteria

any specific requirement for the system to take special precautions against unauthorised access.
Other than storing the members passwords securely, we still rate this criterion overall, as being
’less important’.

Efficient

Is it important that the system is efficient to use? Based on the requirement that the system
should be easy to use, it can be deduced that for this to hold, the system must also be efficient,
else it would require many resources to perform a task in the system, and thus contradict the
requirement and make the system less easy to use. This criterion is therefore rated as being
’important.’

Correct

Does the system correctly fulfil the requirements? From the requirement that the system must
have the same functionality as the current system, it can be deduced that the system must work
at least as correct as the current system. Therefore, this criterion is ’important.’

Reliable

Is the functionality of the system reliable, can we depend on it to produce a precise output
every time and not cause errors or terminate? In the PACT analysis, it was mentioned that
the members of AKK were able to go climbing whenever they wanted to, and that the system,
for this reason, should be reliable. However, since the members of AKK do not depend on the
system in order to climb, but only to administrate routes and sections, this criterion is rated
’important’, instead of ’very important’.

Maintainable

Should it be easy to locate and fix system errors? Even though maintainability from a program-
mer’s perspective always seems important, we have no requirements or other things from our
analysis that states this, and this criterion is therefore deemed as being ’less important’.

Testable

Should we be able to easily test and determine if the system works as intended? From the study
curriculum (Thomsen, 2015), we can see that we must be able to systematically test our program
and ensure that it solves the client’s problem. This criterion is, therefore ’very important’ for
this project.

Flexible

Is it important that the system is flexible and can handle changes in the context? In the PACT
analysis, we derived a requirement which stated ”the system should be dynamic in regards to the
context”. For this to be solved, the system must be able to cope with changes in the context and
this criterion is therefore rated as being ’important’.

Comprehensible

Should the users of the system easily be able to get a coherent understanding of the system?
Based on the requirement that the system should be easy to use, we can derive that the system
also must be coherent and for this reason, we prioritise this criterion as ’very important’.

50

Chapter 6. Architectural Design 6.2. Technical Platform

Reusable

Should the system or parts of the system be usable in other systems? There is no requirement
that our system should be reusable and the criterion can therefore be deemed as ’irrelevant’.

Portable

Should it be easy to move the system to another technical platform? In section 6.2, it will be
mentioned that we want to develop in C# for the web. However, it was also mentioned in the
system definition, that it should work on tablets and smartphones, which means that it is not
unrealistic that the system will be ported to another technical platform in the future. However,
it is not a focus for this particular project and we therefore consider this requirement to be ’less
important’.

Interoperable

Is it important that the system can be coupled to other systems? No requirements or analysis
states that the system should be interoperable and this criterion is therefore rated as being
’irrelevant’.

Summary

All of the previous requirements and their priority for the system have been summarised in table
6.1.

Criterion Very
important

Important Less
important

Irrelevant Easily
fulfilled

Usable ×
Secure ×
Efficient ×
Correct ×
Reliable ×
Maintainable ×
Testable ×
Flexible ×
Comprehensible ×
Reusable ×
Portable ×
Interoperable ×

Table 6.1: Prioritising of design requirements

6.2 Technical Platform

In this section, we describe how the system is interacted with, as well as on what platform it is
interacted through. We also mention what languages the system is programmed in, and why we
made this decision.

51

Chapter 6. Architectural Design 6.3. System Architecture

6.2.1 Platform and Interaction

As specified in section 3.3, the system has to be mobile, and therefore, we develop the system
for mobile devices such as smartphones and tablets. If someone at the climbing club does not
own such a device, replacing the current whiteboards with one or more tablets is a possibility
for the club, so everyone at the club has access to the system. Being able to use the system on
a PC would also be ideal, but it is not a necessity.

The system is interacted with using a touch-based device and such a device is therefore a
requirement. We focus on developing the application so it works on both Android and iOS.
Developing a web-based application makes it work easily on both devices, and even make it work
on PCs too. Since the application requires input in form of touch, there is no elements that can
be interacted with by hovering.

6.2.2 Programming Languages and Frameworks

We develop the system using Microsoft C#, because we all have experience using that language,
and because we develop the system in the object-oriented paradigm according to the curriculum
(Thomsen, 2015, p.21). To develop the system, we use the cross-platform framework ASP.NET
Core. This is because it enables both Windows, Mac and Linux users in the group to develop,
build, and run the application using .NET Core (Microsoft, 2016b). ASP.NET Core also in-
cludes the MVC (model-view-controller) framework, which can be used to construct a layered
architecture similar to the simple architecture proposed in OOA&D with model, function, and
interface layer (Mathiassen et al., 2000, p.10). Because we create a web-based application, we
use HTML, CSS, and JavaScript to develop the user interface. We also use Handlebars.js which
is a templating engine which is used to render templates for the user interface, that can be
reused across multiple pages and show more dynamic content than static HTML pages (Katz,
2016). Finally, we use JQuery for interaction between JavaScript and HTML elements, as well
as sending requests to the server-side API.

To handle the data of the system, we use Microsoft Entity Framework Core which is a part of
.NET Core, as this offers the possibility of using Code First databases. This allows us to define
our database structure directly in our programme, instead of manually writing database queries
(EntityFrameworkTutorial, 2016).

6.3 System Architecture

As mentioned in section 6.2, our system is a web-application and thus makes it obvious to base
our architecture on the client-server architecture pattern (Mathiassen et al., 2000, p.197-201).
This divides the system into two main components; the client and the server, as seen on figure 6.1.
The client then consists of three components: ClientService, ViewModel, and View. The server
consists of a controller and model component. The architecture for our system is illustrated
on figure 6.1, where the arrows indicate that the component pointed by is dependent of the
component pointed to.

52

Chapter 6. Architectural Design 6.3. System Architecture

ClientClient

ServerServer

ClientServiceClientService

ViewModelViewModel

ViewViewModelModel

ControllerController

Figure 6.1: Overview of system components. Arrows indicate a dependency.

In the following sections we will describe the design of the five components: Model, Controller
, ClientService, ViewModel, and View.

6.3.1 Model Component

The model component contains the classes, attributes and relations for representing the problem
domain in the system. In this section, we design the model component based on the events and
classes found in the problem-domain analysis. First, we determine how events and their attributes
should be presented in the model based on the event table in section 4.1.2. The only event that
has attributes in our system is the Route created event which has an attribute representing the
date the route was added. Table 6.2 shows how this event affects different classes.

Classes
Events Section Route Rating Comment Beta Member Grade Hold
Route created ∗ + ∗ ∗ +

Table 6.2: Excerpt from table 4.3 showing the event Route created.

Because the Route created event only occurs once for an object in the Route class we can
simply add an attribute on the Route class to store the date of creation.

Model Component Structure

To design the structure of the model component we make adjustments to the class diagram
derived in section 4.2 to use it during the implementation activity.

53

Chapter 6. Architectural Design 6.3. System Architecture

From the use case specification for adding an image to a route (figure 5.7), we have chosen
to model holds as being part of an image of a route, since this allows us to show the holds of
the specific route. We therefore introduce a new class called Image that aggregates zero or more
Holds.

1

0..1

10..*

1

0..*

1 0..*

1

0..*

1

0..1

1

0..*

0..*

1

0..* 1

0..*
1

Section

Name

Route

Name
Colour of holds
Colour of tape
Note
Date created

Member

Display name
Username
Password
Role

Grade

Name
Colour

Image

Width
Height
File url

Hold

Position

Rating

Score

Video Beta

File url

Comment

Text

Figure 6.2: Model structure.

In this activity, we made a structural change compared to the class diagram found in section
4.2. After interviews with the climbing club, we found that the only reasonable format that a
beta would be given in, was video. However, after our third usability test, as described in 10.4,
we found that most members when creating a beta, did so by creating a comment, not uploading
a video. Also, we found that beta is information you give to each other, so one climber might ask
another to “give the beta” to a certain route. To represent this in our system, we have chosen to
model a video beta as being a part of a comment. This means that a beta is now an attachment
to a comment, instead of being a completely separate object.

By modelling it this way, we can create a feed for each route where members can share beta
in form of comments and videos with each other.

6.3.2 Controller Component

The controller component consists of several controllers, one for each table in the database. Each
controller is responsible for keeping the model up-to-date by making functionality available to
the client service component which then reports changes that needs to be updated in the model.
The controller also interprets information in the model in a way that is advantageous to the

54

Chapter 6. Architectural Design 6.3. System Architecture

client by for example filtering irrelevant routes by request of the user. The different controllers
and their functions are illustrated on figure 6.3. The methods in the controllers are based on the
functions found in the application-domain analysis in section 5.2.2.

The controllers respond to REST-like HTTP requests. REST (Representational state trans-
fer) is an ”architectural style for distributed hypermedia systems”. ”The central feature that
distinguishes the REST architectural style from other network-based styles is its emphasis on a
uniform interface between components”(Fielding, 2000, Ch. 5). This uniform interface is achieved
by following conventions of requests for interacting with the system as a service. For this, the
URL is used to indicate what part of the model you want to operate on and HTTP methods or
verbs like GET, POST, PATCH, and DELETE are used for the different operations that can be
used on the model. These are read, write, update, and delete. The intention is that you are able
to interact with any REST service without knowing anything about the service. In reality this
goal can be difficult to achieve.

55

Chapter 6. Architectural Design 6.3. System Architecture

URL Verb Method

/api/section GET GetAllSections
/api/section POST AddSection
/api/section DELETE DeleteAllSections
/api/section/{id} GET GetSection
/api/section/{id} PATCH UpdateSection
/api/section/{id} DELETE DeleteSection
/api/section/{id}/routes GET GetSectionRoutes
/api/section/{id}/routes DELETE DeleteSectionRoutes
/api/route GET GetRoutes
/api/route POST AddRoute
/api/route DELETE DeleteAllRoutes
/api/route/{id} GET GetRoute
/api/route/{id} PATCH UpdateRoute
/api/route/{id} DELETE DeleteRoute
/api/route/{id}/image GET GetImage
/api/route/{id}/comment POST AddComment
/api/route/{id}/comment/{commentId} DELETE RemoveComment
/api/route/{id}/rating PUT SetRating
/api/grade GET GetAllGrades
/api/grade POST AddGrade
/api/grade/{id} GET GetGrade
/api/grade/{id} PATCH UpdateGrade
/api/grade/{id} DELETE DeleteGrade
/api/grade/{id1}/swap/{id2} PATCH SwapGrades
/api/holdColor GET GetAllHoldColors
/api/holdColor POST AddHoldColor
/api/holdColor/{id} PATCH UpdateHoldColor
/api/holdColor/{id} DELETE DeleteHoldColor
/api/member GET GetAllMembers
/api/member POST AddMember
/api/member/{token} GET GetMemberInfo
/api/member/{token}/ratings GET GetMemberRatings
/api/member/login GET Login
/api/member/logout GET Logout
/api/member/role GET GetRole
/api/member/role PATCH ChangeRole

Table 6.3: Controller methods with the associated request URL and HTTP verb.

56

Chapter 6. Architectural Design 6.3. System Architecture

�Component�
Controller

RouteController

GetRoutes
AddRoute
DeleteAllRoutes
GetRoute
UpdateRoute
DeleteRoute
GetImage
AddComment
RemoveComment
SetRating

SectionController

GetAllSections
AddSection
DeleteAllSections
GetSection
UpdateSection
DeleteSection
GetSectionRoutes
DeleteSectionRoutes

MemberController

GetAllMembers
AddMember
GetMemberInfo
GetMemberRatings
Login
Logout
GetRole
ChangeRole

GradeController

GetAllGrades
AddGrade
GetGrade
UpdateGrade
DeleteGrade
SwapGrades

HoldColorController

GetAllHoldColors
AddHoldColor
UpdateHoldColor
DeleteHoldColor

Figure 6.3: Illustrates the different controllers in the system. The methods implements the
functionality listed in table 5.2 that was made as a part of the application-domain analysis.

6.3.3 Client Service Component

The client service is responsible for sending and receiving data to and from the model through
the controller. The component consists of three clients, each of which is responsible for commu-
nication with its corresponding controller. The calls to the client service are facilitated by the
view models.

�Component�
ClientService

1 1
1

1 1 1

1

Client GradeClient HoldClient

MemberClientRouteClient SectionClient

Figure 6.4: Illustrates the clients of the system. The methods of each client are equivelent to the
methods on the controllers in figure 6.3

57

Chapter 6. Architectural Design 6.3. System Architecture

6.3.4 View Model Component

The ViewModel component contains logic behind the user interface and is responsible for updat-
ing the state of the data for the user interface. The ViewModel component uses the ClientService
component to send and receive data according to the actions performed through the methods
in the ViewModel. The second responsibility of the ViewModel is to trigger events when the
state the ViewModel changes to make other classes able the observe changes in the ViewModel.
Figure 6.5 shows the ViewModel components and their associated methods.

�Component�
ViewModel

NewRoute

Change Section
Change Grade
Change Hold Color
Change Route Number
Change Author
Change Note
Change Image
Change Tape
Add Route

EditRoute

Change Section
Change Grade
Change Hold Color
Change Route Number
Change Author
Change Note
Change Image
Change Tape
Update Route

FindRoute

Refresh Routes
Change Grade
Change Section
Change Sort By
Search

RouteInfo

Edit Route
Delete Route
Update Rating
Download Image
Change Rating
Add Comment
Delete Comment
Add Beta
Delete Beta

AdminPanel

Add Section
Clear Section
Delete Section
Rename Section
Select Grade
Add Grade
Delete Grade
Update Grade
Swap Grades
Change Role of Member
Add Hold Color
Update Hold Color
Delete Hold Color

Register

Change Full Name
Change Username
Change Password
Change Password Confirm
Register

Login

Change Username
Change Password
Login

Figure 6.5: ViewModel Component containing different ViewModels and their methods.

6.3.5 View Component

The View component is responsible for presenting the state of a ViewModel component. A view in
the View component connects buttons, text-fields, images, and other user interface component
to create a page that enables the user to interact with the corresponding view model in the
ViewModel component. Figure 6.6 shows the different views in the system which are described
below.

58

Chapter 6. Architectural Design 6.4. Connecting Components

The FindRoute view is made from the use case Viewing Route Information on figure 5.2, and
corresponds to the part of this use case that is showing routes to the actors based on different
filters and sort options.

The RouteInfo view is the second part of the Viewing Route Information use case and shows
information about a specific route.

The EditRoute view corresponds to the use case for editing a route as seen on figure H.2
in appendix H. When the edit button from the RouteInfo view is clicked, the viewmodel will
redirect the user to the EditRoute view where the user can change the content of a route e.g. its
grade.

The AdminPanel view corresponds to the use case illustrated on the statechart diagram for
section administration on figure 5.5. From the AdminPanel view, the user can add new sections.
Furthermore, a specific section can be selected, and when selected the user can edit, clear, or
remove the section, as well as view all routes that are part of the selected section.

The NewRoute view corresponds to the use case Adding Route, and allows a member to add
a new route. When the Add New Route button is tapped, the user can add all the necessary
information required for the route, then tap the Add button, which sends a request to the
controller, and then, adds the new route.

The LogIn view corresponds to the first part of the Authenticating use case. The view is
accessed, either by accessing the LogIn view by pressing the LogIn button, or by accessing
a feature which requires authentication. The user can become authenticated, once they have
typed in their username and password, and press the log in button.

The Register view covers the last part of the Authenticating use case. If the user taps the
Register button, they will see a screen with four fields. This allows the user to type in their
display name, their username, and their password twice. In order to register, the username will
have to be unique, and the passwords have to match each other, to ensure the user did not
mistype their password.

�Component�
View

FindRoute EditRoute AdminPanel NewRoute

RouteInfo LogIn Register

Figure 6.6: A list of the views that make up the user interface.

6.4 Connecting Components

Figure 6.7 shows an example of the flow of information in our system architecture. The process
starts with the user selecting a filter on the view to see only certain routes. The event of selecting
this filter is handled by the viewmodel which then in turn queries the client to fetch the filtered
routes from the server. The client handles the connection to the server, and passes along the
query to the correct controller on the server. The controller can then fetch the routes from the
model, before returning it down the chain until it reaches the viewmodel again. The viewmodel
will then update the Document Object Model (DOM) of the view to display the updated routes.

59

Chapter 6. Architectural Design 6.4. Connecting Components

Figure 6.7: Illustration of information flow in our architecture. The process starts at the actor
and sends a query following the dashed lines before returning the data represented as the solid
lines.

This information flow can also be represented with dependencies between the different com-
ponents in our architecture. The components with their dependencies are illustrated in figure
6.8. The figure is an extension of figure 6.1, which illustrated the overall system architecture
components. This extended figure is an overview of the different classes in each component of
the new system.

60

Chapter 6. Architectural Design 6.4. Connecting Components

�Component�
Client

�Component�
Server

�component�
View

�Component�
ViewModel

�Component�
ClientService

�component�
Controller

�Component�
Model

RouteInfoView EditRouteView AdminView NewRouteView

FindRouteView LogInView RegisterView

RouteInfo EditRoute Admin NewRoute

FindRoute LogIn Register

GradeClient SectionClient RouteClient MemberClient

HoldClient

SectionController RouteController GradeController

MemberControllerHoldColorController

Section Route Grade Member

RatingComment Video Hold HoldColor

Figure 6.8: Shows the connections between the different components in the components, which
illustrates the classes in each component.

61

Chapter 6. Architectural Design 6.4. Connecting Components

Summary

In this chapter, 12 basic design criteria for software development were prioritised based on their
importance for the system. The most important criteria for the system were found to be that
it needed to be usable, reliable, testable, and comprehensible. Criteria such as security and
portability were prioritised as being less important. It was briefly described how the system
was developed using the programming languages C# and Javascript as well as the frameworks
HandleBars and JQuery. In section 6.3, the server-client architecture used in the system in-
cluding the five main components of the system, the Model, the Controller, the ClientService,
the ViewModel, and the View, was explained. Lastly the flow of information in the system was
described: The user interacts with the system, which triggers events in the ViewModel that calls
the appropriate methods on the client. The client then communicates with the controller, which
is responsible for extracting information from the model, which the controller can then send back
to the client and eventually the view.

Having described the architectural design of the system, it was possible to describe the design
that was used in the view of the system as described in the following chapter.

62

Chapter 7

User Interface Design

This chapter contains a discussion on the user interface of the system, including general theory of
graphical user interfaces and prototyping, and their use in the project. The first thing described
is the purposes and types of prototypes, followed by a description of the prototyping used in
this project. An overview of the user interface of the system in its final form is then presented,
with illustrations and descriptions on which use cases the different pages relate to. Finally it is
described how different key principles and design guidelines are used to ensure usability in the
system and thereby solve the requirement that the system must be easy to use.

7.1 Prototyping

This section aims to describe what a prototype is, which types of prototypes exist, and what
their purposes are.

A prototype is generally a small and very limited part of an IT-system, where some of the
main components (interface, function, model) are used, in order to help system designers build
an intuitive and easy to use application for end users (Melissa Mcclendon et al., 2012). A
prototype is an early version of the future system and is used to test the system or parts of it
while communicating with end-users to get feedback. Since some prototypes focus on specific
parts of the system, might mean that other parts of the system may not exist in the prototype,
or may just be non-interactive sketches. Other prototypes may focus on providing small insight
into the entire system.

In the following sections, several kinds of prototypes are described, the purposes of using them
in specific parts of the project, and how they can help overcome problems in the development
process. Different types of prototypes are used to achieve different goals, and only some of them
will be described.

The following sections on prototyping are written on the basis of the article ’Prototyping in
Industrial Software Projects - Bridging the Gap Between Theory and Practice’ (Lichter et al.,
1994, p.826-827) and on the book ’Object oriented analysis & design’ (Mathiassen et al., 2000,
p.33 & 167).

7.1.1 Purpose of Prototypes

Constructing prototypes can help the development of a system in several ways. They can be
helpful in the beginning of the project to confirm the requirements of the system to be developed,
but also later in the project by finding and refining problems that may have arisen during

63

Chapter 7. User Interface Design 7.1. Prototyping

development. During early development, a low-fidelity prototype will usually be used in order to
show off your ideas to your clients, in order to get feedback. Using a low-fidelity prototype such
as a paper prototype is important since a prototype that is done with only pen and paper, makes
the client believe that all the progress made can easily be discarded and that nothing significant
will then be lost.

7.1.2 Horizontal and Vertical Prototyping

A system with a simple architecture has three layers: an interface, function, and a model, as
shown in figure 7.1a. When developing a prototype, it is important for the developers to consider
what it is they want to accomplish. They could either want to test a specific part of the system
in-depth, or the entire system superficially. Figure 7.1 illustrates this.

Interface

Function

Model

(a) General System Architec-
ture

Interface

Function

Model

(b) Horizontal Prototype

Interface

Function

Model

(c) Vertical Prototype

Figure 7.1: Figure showing differences between horizontal and vertical prototypes. The blue
colour represents the architectural parts involved in the prototype.

As shown in figure 7.1b, a horizontal prototype can involve all of the interface, some of the
functionality, and almost nothing, if any, part of the underlying model. This can help test
navigation and user experience, and if relevant elements are available, and how intuitive the
design is.

A vertical prototype, as shown in figure 7.1c, does not go in-depth with any of the three parts
of the system architecture, but instead it implements a chosen part of the system entirely. This
means that a fully functional prototype has to be implemented.

7.1.3 Types of Prototypes

Constructing prototypes can help the development of a system in several ways. They can be
helpful at the beginning of the project to confirm the requirements of the system to be developed,
but also later in the project by finding and refining problems that may have arisen during
development. Three different kinds of prototypes exist: the presentation prototype, the prototype
proper, and the pilot system.

The presentation prototype is, as its name suggests, used as a way of presenting the future
system to a client. This kind of prototype is used early in the system development process and
is not very resource-heavy. The purpose of this kind of prototype is to give clients an overview
of the system to be developed, which allows them to give feedback on the feasibility of it. When

64

Chapter 7. User Interface Design 7.1. Prototyping

doing a presentation prototype, it is usually done with a low-fidelity prototype such as a paper
prototype. The paper prototype is often made on the basis of the first interview between the
developers and the client. The presentation prototype is typically a horizontal prototype, since it
is an attempt at visualising the application’s interface with the goal of finding potential usability
problems.

The prototype proper has more functionality than the presentation prototype. It is a provi-
sional operational software system (Lichter et al., 1994, p.826), that is used to e.g. reveal problems
in the design or illustrate specific functionality. This prototype is used later in the project de-
velopment process, and the development of the prototype is based on information gathered after
showing the client the presentation prototype. A prototype proper is higher fidelity than the
previously mentioned presentation prototype, which means it is more resource-heavy since the
prototype has more functionality, and could e.g. be a well-made PowerPoint prototype.

A pilot system uses a functional version of the system under development and tests it against
the end-users. While the pilot system is a working version of the system, it will not be taken into
use. The purpose of this kind of prototype is to get a better understanding of how the system will
be used in the proper environment and to refine potential usability problems discovered while
prototyping.

7.1.4 Low-fidelity Presentation Prototype

To design the user interface for the system, we choose to create a horizontal low-fidelity presen-
tation paper prototype as described in section 7.1.3.

We used a horizontal presentation paper prototype because we were at a stage where we
wanted to show the client our initial thoughts on the interface of the new system, and for them
to comment on it. Hopefully, some of those comments would represent thoughts and ideas of
their own, which we can use to adjust and improve the user interface. This prototype illustrated
essential parts of the user interface for the new system. Using a paper prototype made it easy
for the client to see that what we presented was nothing but initial ideas that could be changed
with little to no cost. The prototype is shown on figure 7.2.

Figure 7.2a shows a list of routes that can be filtered and sorted by section, grading, date
and rating. When the user selects one of these routes, the user interface navigates to the screen
illustrated in figure 7.2b, which shows additional content such as an image of the route, note
and beta. Finally, figure 7.2c shows the screen, the user will see when providing an image of the
route.

After we created the paper prototype, we visited the climbing club again and showed it to
our client. From this visit we discovered some issues with the design as well as ideas for other
features. Notes from this visit are shown in appendix C. The following summarises the findings
from this visit.

65

Chapter 7. User Interface Design 7.1. Prototyping

(a) Front page shows a list of
routes.

(b) Route info for a single
route.

(c) Taking an photo of a route
on the bouldering wall.

Figure 7.2: The paper prototype from the first iteration.

Figure 7.3: Suggestion from the client to represent route numbers in a way which was more
representative of how they were already displayed on the climbing wall.

Figure 7.3 illustrates how our client came with the suggestion of changing the presentation of
the identifying number of a route in the system. By moving the route number inside the coloured
square representing the grade, we were able to get a stronger connection between how the route
is represented in the problem domain and how it is represented in the application domain.

Another thing that needed to be more clear is what the three drop-down menus do. To clarify
this we talked about adding a word above each drop-down menu that describes what the routes
are filtered or sorted by as shown in figure 7.4.

66

Chapter 7. User Interface Design 7.1. Prototyping

Figure 7.4: Shows how text can be inserted above each drop-down menu to clarify what each
drop-down menu represent.

From our visit we got some comments on the design and suggestion for other features.

Comments and Suggested features from the second interview (See appendix C)

• Marking holds on the image of the route with circles.

• For each route in the list indicate with small icons if there are other content available such
as betas.

• Rating a route would be nice to have but it is more important that it has the same
functionality as the whiteboard system.

• Commenting a route.

• Support for naming a route.

The suggestion: Marking holds on the image of the route with circles, was used to adjust our
design to be able to add and show circles above the holds in the route image as shown in figure
7.7c. The second adjustment is to introduce icons to indicate all the extra information that are
available to a route in the system. We choose to use this in our final design as shown in figure
7.5a where we included icons for showing whether or not a route contains beta, a note or an
image. Rating a route was shown in the paper prototype and was approved by the client that it
would be a nice feature to have, but it was prioritised as a should-have requirement like adding
beta and commenting a route. Thereby rating, adding beta and commenting was prioritised as
less important than the must-have and should-have requirements as described in section 3.3. We
reached these could-have requirements in the third and final iteration. This is shown in the next
section where we describe the final user interface design.

67

Chapter 7. User Interface Design 7.2. Page Overview

7.2 Page Overview

In this section, we give an overview of the final system and its features. We do this by showing
the functionality provided at each page in the system and use this later to discuss how the system
solves the requirements in section 3.3.

7.2.1 Find Route Page

The Find Route page is based on the Viewing Route Information use case. It lets the user get
an overview of the routes available in the climbing club as shown in figure 7.5. The Find Route
page provides options for filtering routes by grade and section, and options for sorting by date,
grading, rating, or author. Another way to find routes in the system is to click on the search
icon and type in a search string containing information about the route(s) that one wants to
find. The result of either filtering or searching is a list of elements representing routes. Each
element shows the overall information for a particular route such as: number, section, colour of
holds/tape, rating, author and date. Each element does also contain three icons that indicate if
the routes contains video beta, note or image.

(a) List of all routes. (b) Searching for a route. (c) Menu opened.

Figure 7.5: The Find Route page.

On each page in the system the user can click on the menu icon in the top right corner to
open the menu as shown in figure 7.5c. The menu contains a home button that will navigate to
the Find Route page. If the user is not authenticated then there will be a button to navigate to
the Log In page. Both authenticated and unauthenticated users will have an Add Route button
shown, but if the user is unauthenticated, they will first have to log in. Finally if the user is an
administrator the menu will contain a button to navigate to the Admin Panel page. The menu
can either be closed by clicking the cross in the top right corner or to the right of the menu.

68

Chapter 7. User Interface Design 7.2. Page Overview

7.2.2 Route Info Page

If the user clicks on one of the routes at the Find Route page the system navigates to the
Route Info page as shown in figure 7.6. This represents the second state in the Viewing Route
Information use case, where all the information that is provided for a route in the system is
shown. This includes all the information that was shown at the Find Route page, as well as
note, image, comments and betas.

(a) Route information includ-
ing a note and an image.

(b) Image of the route is en-
larged when the user clicks it.

(c) Comments including betas
can be added to a route.

Figure 7.6: The Route Info page.

The Route Info Page is also based on the Adding Additional Route Content use case where
authenticated users can provide additional content to the route. Users can rate a route by clicking
on the stars at the Route Info page or add a comment or beta using the input field as shown
in figure 7.6c. If there is no image added to the route then there will be a placeholder with the
text ”Click to add image”. If an authenticated user clicks on the image placeholder or on the
Edit button then the system will navigate to the Edit Route page where an image can be added.
Finally an authenticated user can choose to delete the route by clicking the Delete button.

7.2.3 New/Edit Route Page

The two pages New Route and Edit Route are almost identical. They both provide input to set
information about a route as shown in figure 7.7. This includes section, grade, route number,
route creator, colour of holds/tape, and optionally image and note.

69

Chapter 7. User Interface Design 7.2. Page Overview

(a) Shows how section, grade,
route number, route creator
and colour of hold is selected.

(b) Image is added by clicking
the Add/Replace Image but-
ton.

(c) Holds are added to an image
by clicking on the holds on the
image.

Figure 7.7: The New Route page.

When a user adds an image to a route then the image is shown with an overlay telling the
user that they can add holds by clicking the image. If the image is captured vertically then
on some smartphones the image may appear with a wrong rotation. To fix this the user can
rotate the image by clicking the rotate button above the image. When the user has entered
information about the route they can click on the create button if they are on the New Route
page, or the save button if they are on the Edit Route page. If the user forgets to specify required
information about the route or the provided information is invalid then the system will show a
message describing what is wrong. If valid information is provided, the system will navigate to
the Route Info page showing the newly changed information.

7.2.4 Admin Panel Page

The Admin Panel is based on the Administrating Sections use case and is extended to handle
administration of grades, holds and other administrators as well. These four categories are
represented in collapsed menus as shown in figure 7.8

70

Chapter 7. User Interface Design 7.2. Page Overview

(a) Sections can be added,
cleared, deleted and
renamed.

(b) A new grade can be added
and existing grades can be
edited and reordered.

(c) Members’ adminis-
tration rights can be
changed.

Figure 7.8: The Admin Panel page.

If the administrator clicks on one of the menu items it will expand as shown in figure 7.8.
Under the sections menu the administrator can select an existing section. This will show all the
routes in the selected section at the bottom of the page to make it more clear what is deleted
if the section is cleared or deleted. If the administrator clicks the Add button then they will be
prompted to enter the name of the new section.

Under the grades menu, the user can re-order existing grades. If they click the Add button
a slider will be shown to select the colour representing the new grade and a text input field for
typing the name of the new grade.

Under the holds menu the administrator can specify which holds that other members can
select from when adding and editing routes.

Finally, under the members menu the administrator can view all members and specify which
members that should gain administrator privileges by clicking the sheriff icon to the right of the
member name.

7.2.5 Log In/Register Page

When an unauthenticated user tries to access the New Route page, Edit Route page or Admin
Panel page, they are redirected to the Log In page as shown in figure 7.9a which shows a message
stating that the feature they tried to use requires them to be authenticated. If the user does not
already have an account they can click on the Register button which navigates to the Register
page where the user should provide their name, username and password, as shown in figure
7.9b. Thereafter, they will be authenticated and the system will keep their session until the user
explicitly clicks the Log out button in the side menu or the cookie that stores their session token
is cleared in other ways. The Log In page can also be accessed by clicking the Log In button in
the menu.

71

Chapter 7. User Interface Design 7.2. Page Overview

(a) Log In page with message
is shown if authentication is re-
quired to access a certain fea-
ture.

(b) A user can register
as a new member in the
system at the Register
page.

Figure 7.9: Log In page and Register page.

7.2.6 Site Navigation Structure

A navigation diagram is used to get an overview of the different pages in the user interface and
the connection between them (Mathiassen et al., 2000, p.159).

The navigation for the system has been made from the use cases in section 5.1.2, and can
be seen in figure 7.10. From the Home page the user can navigate to any page in the system
except the Edit and Register pages, which can only be accessed from the Info or Login page.
Once the user has been authenticated through the Login or Register page the user can navigate
to the admin panel through the navigation menu which is placed in the top right corner of every
page. Each page except the Home page has a back button and to understand how this works we
can create a navigation hierarchy for all pages, which is the shortest amount of steps it takes to
navigate to a page from the home page. The back button then works by navigating to the first
page in the navigation hierarchy from which the specific page can be accessed from. This means
that the back button for the Admin, Info, Login and Add page will navigate to the Home page
since these all can be accessed from the Home page. Furthermore the back button for the Edit
will navigate to the Info page, and for the Register page it will navigate to the Login page.

72

Chapter 7. User Interface Design 7.3. Design Principles and Guidelines

Login

Home

Info

Admin

Edit Add

Register

Figure 7.10: Navigation map

7.3 Design Principles and Guidelines

In this section, we describe different design principles and guidelines. We describe these so we
get a better understanding of how we can create a user-friendly experience by following these
guidelines, and will therefore help us in solving the requirement: The system must be easy to use.
In Benyon (2010, p. 90) twelve design principles are described and categorised into the following
four groups:

• Access, ease of learning and remembering

• Ease of use

• Safety

• Accommodating differences between people and respecting those differences

We chose to focus on the first two design principles: ”access, ease of learning and remember-
ing” and ”ease of use” because these are related to the requirement: The system must be easy to
use.

According to Benyon (2010, p. 90), the design principles concerning access, ease of learning,
remembering and ease of use are:

73

Chapter 7. User Interface Design 7.3. Design Principles and Guidelines

Visibility Make sure that the user knows what functions are available and what the system is
currently doing.

Consistency Make sure the design is consistent throughout the system.

Familiarity Make sure that the design uses symbols that users are familiar with, especially
from the context in which the system will be used.

Affordance Make sure that different parts of the design look the part, e.g. buttons should look
press-able and text-fields selectable.

Navigation Make sure that navigation is comprehensible, so that users always know where they
are in the system.

Control Make sure that there is a mapping between controls and the result of the controls.

Feedback Make sure that the user knows that the system is working on some input they gave,
or actually registered a key-press.

Design principles can lead to more concrete design guidelines about the appearance of ele-
ments in the user interface (Benyon, 2010, p. 89). This can include, but is not limited to: size,
colour and style of buttons, menus, information boxes, and labels. It is simply a description of
the general theme that a design should follow, and can be made as simple or advanced as it needs
to. While developing a unique design for every new system would be good news for developers
wanting to try out a lot of different design methods, it is generally not a good idea. Using a tried
and tested design guideline means that the developers are ensured that their system will have at
least some of the key points above. Especially consistency, familiarity and affordance are going
to be well-represented in a system that uses a widely known and accepted design guideline.

Apple, for example, has created a design guideline for developers looking to make applications
for their devices (Apple, 2016). This guideline is an attempt at making apps for iPhones fit in
with the general design theme of the operating system. This means that buttons, navigational
menus, settings, dialogue-boxes, and such, all have the same feel to them, which is good for
consistency and affordance. It also ensures that as long as Apple only features buttons that
they have thoroughly usability tested, in their operating systems, applications that follow their
guidelines will also have buttons with a high degree of usability, which is a good thing for not
only the developer, but also Apple. This makes writing detailed and thorough design guidelines
beneficial to software developers and large companies that deal with platforms for applications.

Even though a lot of companies have their own design guidelines or style guides, they are
generally concerned with the same core concepts for designing for Human-Computer Interaction
(HCI). Basic ideas of design, such as grouping together elements and controls that are logically
connected, are found in all proper design guidelines from major software companies (Benyon,
2010, p. 323, p. 335, p. 215).

Some basic basic concepts and ideas that should be considered when designing a graphical
user interface are listed here and described in detail below.

• Interactive elements

• Typography

• Colours

74

Chapter 7. User Interface Design 7.3. Design Principles and Guidelines

Interactive elements are obviously a hugely important part of any interactive design. It is
especially important to consider how the end user is going to experience pressing buttons on
a smartphone, when designing them for that platform (Benyon, 2010, p. 217). The size of a
button is going to affect how easy or difficult it is to hit the desired one. Generally, the touch
target (the zone inside of which tapping should activate the element) should be larger than 40x40
pixels, for users to comfortably activate them (Sun et al., 2007). The graphical item itself can
be smaller, but making it less than 24 pixels on any one length, can make it hard to see. While
the distance between interactive elements is not as important as the touch target of them, it still
has an impact on the user’s understanding of the different elements’ boundaries (Sun et al., 2007).

Generally, a user interface contains text in many different forms. A good design should try
to establish a hierarchy of the text in a specific screen of the system, as it makes it easier for the
user to know which things to read first (Benyon, 2010, p. 396). As with interactive elements, size
plays a large role in how users perceive text, and making one paragraph larger than another is a
straight forward way of making it seem more important to the user. Varying text sizes have its
limits as well: if a screen contains too many different sizes of text, it can become overwhelming
to the user, who will have trouble differentiating the sizes. (Benyon, 2010, p. 202). Another
way of making text more readable is to use a font with serifs. While a sans-serif font can help
give a cleaner and more modern look to a design, it is more difficult to read. Therefore, careful
consideration should be used in choosing the fonts of a design.

Having a lot of text can also become a problem for a design: filling up the entire screen with
text can be overwhelming to users since the task of reading it will seem insurmountable. Trying
to make the same text take up less room by reducing the font size could result in eye-strain for
the user. All in all, there are a lot of things to consider when it comes to typography in a design.

Colours can be used for a variety of effects in a user interface design (Benyon, 2010, p. 343).
Differences in colours can be used to to highlight different parts of a design. This means that
they can be used to make it easier to distinguish different logical parts of the design from each
other. The colours of interactive objects can also help draw attention to them in the design: a
red button in an otherwise colour-neutral design is going to stand out a lot. It is important to
note that using colours to draw attention to too many things in a design, diminishes the effect
greatly, since this means that the different elements will all be vying for the user’s attention.

Depending on how much one element needs to stand out from another, the contrast of the
two elements’ colours can be tweaked. This is especially important when it comes to text, since
choosing two colours with high contrast can help reduce eye strain and make the text easier to
read. Contrast can also be used to make it more clear to the user how a page is divided in to
different sections or to direct their attention to important elements, such as the main button of
the page.

Changing the saturation of the colours in a design can affect the user’s emotional response to
using the system (Benyon, 2010, p. 344). A colour scheme with a high saturation, for example,
can help make a design appear more energetic and alert, as opposed to a more calm appearance
if less saturated colours are used. The saturation of the colour scheme should be matched with
the content, intended user base, and the context in which the system will be used.

75

Chapter 7. User Interface Design 7.4. Using Design Guidelines

7.4 Using Design Guidelines

As described in 7.3, design guidelines can be helpful when trying to design a user interface with
a high degree of usability. To make it easier for ourselves to create a design that is consistent
and easy to learn, we decided to use Google’s guidelines for Material Design (Google, 2016) for
major parts of our design.

7.4.1 Using Material Design

We have chosen to make use of Google’s guidelines for Material Design, because as we found out
from the PACT analysis, many of AKK’s members have a smartphone and according to TNS
(2015, P. 14), most either have, or have had, an Android-based smartphone which follows the
same design guidelines. Material Design relies heavily on trying to mimic some of the physical
characteristics of materials in the real world. Generally, this means that distinct elements and
sections within the design are represented a bit like how pieces of paper are in the physical
world. This means that information is displayed on sheets of ”material” or ”cards”, which casts
a shadow to the material underneath it as if it was actually laying on top of it. All material
sheets have the same thickness and are incapable of moving through each other. Some other
forms of movement is highly encouraged, as it can help give the user feedback on their actions.

We decided early on that we wanted our system to represent the routes of AKK as items in
a list. This idea came before any kind of prototype was made because it fit our mental model
of how to most intuitively represent objects in an easily sortable manner. We also knew early
on that a significant amount of information would have to present on each item of this list of
routes. Given the basics of Material Design it makes sense for routes to be displayed as cards
slightly raised from the background.

An example of the usages of these cards is on the Find route page where each card contains
the following information:

Grading Difficulty of the route

Number The identifying number of the route

Section The section in which the route is located

Hold-colour The colour of the holds on the route

Rating The average user-rating of the route

Video-beta Whether or not the route has video-beta added to it

Note Whether or not the route has a note attached to it

Image Whether or not an image of the route has been uploaded

Author The name of the person who created the route

Date The date the route was added to the system

An example of a single card can be seen on figure 7.11

76

Chapter 7. User Interface Design 7.4. Using Design Guidelines

Figure 7.11: Showing a route card.

We chose to represent five of the ten items using icons, which meant that we could drastically
reduce the amount of text required, while maintaining the same amount of information and
making some of it available in a more intuitive manner. The hold-colour is a good example of
this, as it allowed us to show a colour the most intuitive way: by showing the actual colour,
rather than writing the name of the colour. Since we also had to display a colour for the grading
of the route, using the hold icon made it easier for users to distinguish which of the two colours
on each route represented what. A few of the elements would directly allow users to identify the
specific route on the wall. We tried to design the route card in a way where these elements took
up the most room, and were the first thing the user would see, if they ”read” the card from top
to bottom.

The author and date were moved to the very bottom of the card, not because they are less
important than the rating and the video, note, and image indicating icons, but because having
an author at the bottom of the card makes it seem a bit like a signature. Dividing the card in
two with the line above the author and date also makes the information below the line stand out
more.

The large blue add button which can be seen in figure 7.12 is what is known as a ”Floating
Action Button” in the material design guideline.

Figure 7.12: The Add Route Button

This button, which is designed as an addition symbol, is also an example of the use of
metaphors in the design. The addition symbol tells the user that they can ’add’ something
to the system. This particular metaphor works because of its familiarity with other usages of
the addition sign e.g. it is mathematical notation. Floating action buttons should be used to
represent the primary action of an application. The primary focus of our system is to find routes,
but one could argue that it is not an action, which would make adding routes the primary action.
Having the button be so prominent on the front page is an attempt at making it very clear to
users that they have the ability to add routes - even if they need to log in to the system first.
In an attempt to show new users that it is possible for them to create routes, we agreed that it
should not be hidden away in a menu, but rather be as available as possible.

77

Chapter 7. User Interface Design 7.4. Using Design Guidelines

7.4.2 General Design Considerations

As explained in section 7.3, some of the key principles that make a system have high usability
are consistency, familiarity, affordance, navigation, and feedback. In this chapter, we explain
how we took these key principles into consideration when designing the user interface.

Visibility

To implement the visibility design principle, we ensured that available features are visible to the
user. Because rating, commenting, adding and editing routes require that the user is authenti-
cated there could be a risk that users would never discover that these features are available. To
prevent this we made these features visible to the users even if they are not yet authenticated.
This is shown in figure 7.13.

Figure 7.13: This figure illustrates our comment/beta box, when a user is not logged in.

We chose to make the comment and beta input field visible with an overlay showing that
the user needs to log in to use this feature. Another way to make features visible to the user is
shown in figure 7.7b, where the route image contains an overlay showing that the user can add
holds by tapping the image. Without this information the user would not directly know that
this feature was available.

Consistency

To implement consistency into the design, we tried to be consistent in the way we used colours,
input buttons, error messages, icons amongst others. Furthermore, we tried to provide common
characteristics to input elements like radio buttons, and text-fields an example of this could be
their common shape. Another example of consistency is the navigation menu that is located
the same place on every page. If elements are reused throughout multiple pages they also stay
consistent in the way we represent them e.g. how we represent holds and grades in the application.
All pages also have the same general consistent design with a black top bar, and buttons are
either red or blue - but never various across the pages, which means that the type delete buttons
are red on every page, whereas edit and add buttons are always blue.

Familiarity

To make the application seem familiar we try to implement design elements that the users are
already familiar with. An example of this could be the usages of metaphors in icons. Figure
7.14 illustrates the usage of such a metaphor in an icon. On the icon there is a paper aeroplane
which refers to the actions of sending a message. When the users see such an icon, they should
be familiar with the effect of pushing the button, which in this case is used to send a comment
so that other users can see it.

78

Chapter 7. User Interface Design 7.4. Using Design Guidelines

Figure 7.14: Metaphor that illustrates the action of sending a message.

Another example is to use commonly used metaphors like the navigation bar, back button,
and image icon where the image icon can be seen on figure 7.15. Another example of familiarity is
a loading bar that comes when an action is being performed which e.g. can occur when uploading
a video. Stars used to rate something is also an example of familiarity, where the amount of
stars indicates how good a route is.

Figure 7.15: Image icon.

Affordance

To implement affordance into the system, we tried to make things do what they look like they
do, this means that if something in the system looks like a button it means that the user can
afford to click it, and that it performs as is expected of a button. Another example is the way
users rate, where empty or grey stars on the route info page means that the users can afford to
press them in order to rate a route, whereas they are filled and yellow if the route has already
been rated by the user.

Navigation

To make the navigation comprehensible and show the users where they are in the system, we
have a title in the header of every page e.g. Edit Route if the users are on the Edit Route page in
the system, this also tells the user which action they are performing. To further help the users
navigate in the application, we created a navigation menu, where the user can navigate to user
pages of the application like the Home Page. On every page except the front page there is also
a back button which when pressed navigates you to the previous page you visited, or in some
cases the home page.

Control

We ensure that the user know what they are in control of in the system by dividing the user
interface into pages that represent control of certain objects from the problem domain. The initial
page showing the list of all routes in the system lets the user take control of the appearance of
the list by enabling filter and search functions and let the user add a new route by pushing the
Add button. At the New/Edit Route page the user controls a single route. At the Admin Panel
the user can be in control of sections, grades, colour of hold and members. To make it clear

79

Chapter 7. User Interface Design 7.4. Using Design Guidelines

what the user is in control of at the Admin Panel page, we group the content into a collapsed
menu containing elements containing sections, grades, colour of hold and members as shown in
figure 7.8. The reason we use a collapsed menu is that it only shows one element at the time and
thereby makes it clear to the user what they are currently in control of.

Feedback

Feedback is used across the application whenever the users perform actions that might need
some feedback; this can be when an user tries to add a route without some of its required fields.
Another example of feedback is when an unauthenticated user tries to perform an action that
needs authentication, and in some instances they are navigated to the login page, and if so a
feedback box provides information on why they were navigated to this page. Another example of
feedback is a red error message that occurs when the user enters a wrong username or password
when trying to login as figure 7.16 illustrates. The colour red is used to attract attention and is
therefore suitable for warnings.

Figure 7.16: Log in error message.

Summary

In this chapter, general theory of prototyping was explained. How this theory was applied to
create a low fidelity prototype for the client at AKK and how the feedback was used to create a list
of suggested features and improvements, was also described. Some of the key principles that help
increase the usability of an application were also described. The key principles were consistency,
familiarity, visibility, control, affordance, navigation, and feedback. The point that using design
guidelines as a way to ensure that these principles are considered during development, was made.
Design guidelines were discussed and found to contain many concepts for how to design well.
Four such concepts were focused on in this chapter: interactive elements, typography, contrast
and saturation. An overview of the entire finished user interface of the system was also presented
along with how the use of design guidelines helped with designing the it.

Having decided on the architectural design of the system and also designed the graphical
user interface of the system, it was possible to implement the remaining architectural layers, as
described in the following chapter.

80

Chapter 8

Implementation

In this chapter, the implementation of the system is described. The structure of the chapter
follows the overall system architecture, as illustrated in figure 6.1. The first description is that
of the model component. Its description includes an explanation of how data is stored in the
system and how classes in the model are mapped in an SQLite database. Next, the second
server-side component, the controller component and how it makes itself available through its
application programming interface (API), is described. A general implementation of an API
response is described in connection to this. The implementation of user authentication and
searching in the server-side components, is also described. The implementation of the client-side
components follows, the first of which is the client component that calls the server-side API.
Next, the implementation of the user interface and its corresponding functionality is described.
This includes a description of how the code in the user interface is separated into views and view
models, and how these are connected. Finally the implementation of the functionality required
for users to add images, comments and video betas to routes in the system is described.

8.1 Server-side

In this section, we first describe the Database and then the Data Access Layer, as described in
the introduction of this chapter.

8.1.1 Database

To be able to store information in the system, we chose an SQLlite database which is a server-less
lightweight SQL database engine that reads and writes directly to disk files (SQLite, 2016). To
be able to retrieve data from the database, we used .NET Core Entity Framework (EF) which
is an Object-Relational Mapping (ORM) framework that maps classes from the model to the
database tables automatically (EntityFrameworkTutorial, 2016).

In EF there are generally three approaches for ORM: Database First, Code First, and Model
First.

In the Code First approach, a database is generated from the relations between classes in the
system, whereas in Model First the entities and relations for the database are created using a
design tool. In Database First the entity classes are created from an existing database.

We chose to use EF Code First since it allowed us to create the entire database structure
using C# and Code First conventions, which meant that we did not have to spend time learning
new tools or manually writing SQL statements.

81

Chapter 8. Implementation 8.1. Server-side

In C#, we created classes and relations corresponding to the class diagram for the model
structure in section 6.3.1.

Listing 8.1, shows the Section class. The Section class inherits an Id from the Model class
and the Id is a globally unique identifier (GUID) that is generated by the database when the row
is inserted into the database. Furthermore, the Id also serves as the primary key for any Section
object as can be seen by the data annotation [key] in listing 8.2. A section also has a Name
and aggregates zero or more routes.

1 public class Section : Model

2 {

3 public Section ()

4 {

5 Routes = new List <Route >();

6 }

7 public string Name { get; set; }

8
9 public List <Route > Routes { get; set; }

10 }

Listing 8.1: Section class

1 public class Model : IIdentifyable

2 {

3 [Key]

4 [DatabaseGenerated(DatabaseGeneratedOption.Identity)]

5 public virtual Guid Id { get; set; }

6 }

Listing 8.2: Model class

Similar classes were created for all our models in the system such as Routes, Grades and
Members. To generate tables for each of these classes, we simply included EF in the project and
created a class that inherited from DBContext that comes with EF. In this class, we created a
DbSet property for each of our model classes, which Code First then uses to generate tables in
the database. On line 7 in listing 8.3, the table for the Route class is created and named after the
property name which in this case is ”Routes”. Line 7-16 in listing 8.3 shows the ten properties
used by Code First to generate tables in the database.

1 public class MainDbContext : DbContext

2 {

3 public MainDbContext(DbContextOptions <MainDbContext >

options)

4 : base(options)

5 { }

6
7 public DbSet <Route > Routes { get; set; }

8 public DbSet <Section > Sections { get; set; }

9 public DbSet <Grade > Grades { get; set; }

10 public DbSet <Member > Members { get; set; }

11 public DbSet <Image > Images { get; set; }

12 public DbSet <Hold > Holds { get; set; }

13 public DbSet <Video > Videos { get; set; }

82

Chapter 8. Implementation 8.1. Server-side

14 public DbSet <Comment > Comments { get; set; }

15 public DbSet <Rating > Rating { get; set; }

16 public DbSet <HoldColor > HoldColors { get; set; }

17
18 [...]

19 }

Listing 8.3: Class for the database context

To create the relations between the classes in the model, we used the Code First conventions.
Listing 8.4 illustrates an example of a one to many relationships between grades and routes. As
it can be seen, the grade class contains a list of Route objects. To make the ’many’ relation to
the Route class each Grade contains zero or more foreign keys, which is referenced to a Route’s
primary key. By doing so, Code First keeps track of which Grade is associated to which routes.
Similarly, the Route class contains a reference to one Grade object where the GradeId is a foreign
key to a Grade.

1 public class Grade : model

2 {

3 [...]

4 public List <Route > Routes { get; set; }

5 }

6
7 public class Route : model

8 {

9 [...]

10 public Grade Grade { get; set; }

11
12 public Guid GradeId { get; set; }

13 }

Listing 8.4: Establising the relations between Grades and Routes

An alternative way of making these relations is through either data annotations like [key]

and [Foreignkey("")] or Fluent API where we specify the relations manually by overriding the
OnModelCreating method in the DbContext class.

Figure 8.1 shows the structure, the dependencies, and the multiplicity between the tables in
the database. The arrows indicate that the one pointed by is dependent of the one pointed to.
An example is the one to many relationships between Holds and Images, where one Hold has one
Image and an Image has zero or more Holds. Furthermore, a Hold must have one Image and is
thus dependent on the Image class.

83

Chapter 8. Implementation 8.1. Server-side

0..* 1 0..1

1

0..* 1

0..*

1

0..*1

0..*

1

0..*

0..1

1

0..*

1

0..*

Sections

Id : BLOB
Name : TEXT

HoldColors

Id : BLOB
HexColorOfHolds : INTEGER
Name : TEXT

Grades

Id : BLOB
Difficulty : INTEGER
HexColor : INTEGER
Name : Text

Routes

Id : BLOB
Name : TEXT
HexColorOfHolds : INTEGER
HexColorOfTape : INTEGER
SectionId : BLOB
GradeId : BLOB
CreatedDate : TEXT
MemberId : BLOB
PendingDeletion : INTEGER

Members

Id : BLOB
DisplayName : TEXT
Username : TEXT
Token : TEXT
Password : TEXT
IsAdmin : INTEGER

Images

Id : BLOB
FileUrl : TEXT
Height : INTEGER
Width : INTEGER
RouteId : BLOB

Holds

Id : BLOB
X : REAL
Y : REAL
Radius : REAL
ImageId : BLOB

Ratings

Id : BLOB
MemberId : BLOB
RatingValue : INTEGER
RouteId : BLOB

Comments

Id : BLOB
Date : TEXT
Message : TEXT
MemberId : BLOB
RouteId : BLOB
VideoId : BLOB

Videos

Id : BLOB
FilePath : TEXT
FileUrl : TEXT

Figure 8.1: Database diagram.

Data access layer

To access the data in the model we use a data access layer (DAL). The DAL abstracts over the
logic needed to communicate with the underlying data stores in the system. It creates common
data access functionality, which makes maintaining and configuring the system easier (Microsoft,
2016a). To implement a DAL in the system we use the repository pattern where the logic that
communicates with the database is separated from the business logic (Microsoft, 2016c) . Listing
8.5 shows the IRepository interface which is a generic interface containing the methods for ac-
cessing and retrieving information from the database. We then implemented the IRepository in-
terface for each class in the model: GradeRepository, HoldColorRepository, HoldRepository,
ImageRepository, MemberRepository, RouteRepository, and SectionRepositry

1 public interface IRepository <TEntity > where TEntity : class

84

Chapter 8. Implementation 8.1. Server-side

2 {

3 void Add(TEntity entity);

4 TEntity Find(Guid Id);

5 void Save();

6 void Delete(Guid Id);

7 IEnumerable <TEntity > GetAll ();

8 }

Listing 8.5: Repository interface

Using the repository pattern enabled us to create test repositories that was used to unit test
the controllers as described later in section 9.3.

8.1.2 API

The API functions by sending an HTTP request to one of its defined URLs with the corresponding
HTTP method as described in table 6.3. An example of such a method is seen in Listing 8.6
where line 2 denotes the URL used to call this method. Furthermore, the call includes a name

parameter which is used in the method to identify and return a section with this name or id from
the database. This attribute also determines the HTTP verb that has to be associated with the
request for the method to be called. The method takes a name or id of a section and returns the
entire section if it exists in the database.

1 // GET: /api/section /{name}

2 [HttpGet("{name}")]

3 public ApiResponse <Section > GetSection(string name) {

4 var sections = _sectionRepository.GetAll ();

5
6 try {

7 Guid id = new Guid(name);

8 sections = sections.Where(s => s.Id == id);

9 } catch(System.FormatException) {

10 sections = sections.Where(s => s.Name == name);

11 }

12
13 if(sections.Count() != 1)

14 return new ApiErrorResponse <Section >($"No section with

name {name}");

15
16 return new ApiSuccessResponse <Section >(sections.First());

17 }

Listing 8.6: Controller method that handles one type of API request

The API follows a specific pattern when responding, the general implementation of an API
response can be seen in listing 8.7. The class simply specify a format where every response
contains a success flag that indicates if the request was successful. A response also contains
data. As the value property is virtual, this format can be overwritten as it is for the specialisation
ApiErrorResponse<T>. Here no data is returned but instead an error message that helps the
developer identify any mistakes. The type is generic to ensure that the Data property can never
be anything but the expected return type of an API request. This is to make it easier to test.

85

Chapter 8. Implementation 8.1. Server-side

1 public class ApiResponse <T> : IActionResult {

2
3 public T Data {get; set;}

4 public bool Success {get; set;}

5 public virtual object Value {

6 get {

7 return new {success = Success , data=Data};

8 }

9 }

10
11 public ApiResponse (bool success)

12 {

13 Success = success;

14 Data = default(T);

15 }

16
17 public void ExecuteResult(ControllerContext context)

18 {

19 new JsonResult(Value).ExecuteResult(context);

20 }

21
22 public Task ExecuteResultAsync(ActionContext context)

23 {

24 return new JsonResult(Value).ExecuteResultAsync(context);

25 }

26 }

Listing 8.7: ApiResponse class

8.1.3 Login

This section describes the implementation of user management in the system and the reasoning
behind the choices made during the implementation.

8.1.4 Cookie Authentication or Token Authentication

ASP.NET Core MVC has a built-in authentication service that uses cookies in the browser to
keep the user logged in and authenticated. It is then simply a matter of adding the [Authorize]
attribute to the view controllers, to get ASP.NET to ensure that a user is authenticated when
accessing those views.

This approach allows for a very easy implementation of authentication, as there is not much
code to be written by the developer, which minimises the risk of bugs in the code.

The downside to this type of authentication is that we require the client to support cookies.
Another approach to authentication, is the use of tokens. In every request sent to the server

that requires authentication, the controller requires the client to send an authentication token
as a parameter, which it can use to authenticate the user.

The token authentication process is shown in figure 8.2. The client contacts the server with
the user credentials, the server then returns a token that the client uses for subsequent requests
to the server that requires authentication.

86

Chapter 8. Implementation 8.1. Server-side

Figure 8.2: Illustration of token authentication process.

We chose the latter approach and implemented token authentication in our system. Even
though cookie authentication would be much easier to implement, we chose not to use it since
we want to keep any client implementation from having to deal with cookies.

To facilitate these authentication tokens, the only change to our Member class was the addi-
tion of a property Token as can be seen in listing 8.8, on line 10. This Token then contains the
latest authentication token for the user and allows the controllers to confirm that the member is
authenticated.

1 public class Member : Model

2 {

3 [...]

4
5 public string Token { get; set; }

6
7 [...]

8 }

Listing 8.8: Member class

To distribute the tokens, we created an interface IAuthenticationService and a class
AuthenticationService that implements the interface. The interface can be seen in listing
8.9.

1 public interface IAuthenticationService

2 {

3 string Login(string username , string password);

4
5 void Logout(string token);

6
7 bool HasRole(string token , Role role);

8
9 void ChangeRole(Guid id , Role role);

10
11 IEnumerable <Role > GetRoles(string token);

12
13 string HashPassword(string password);

14
15 bool TestPassword(string password , string hashedPass);

16 }

Listing 8.9: IAuthenticationService interface

87

Chapter 8. Implementation 8.1. Server-side

This service provides an authentication token with the Login method, if provided with valid
user credentials. It can also invalidate a token with the Logout method and it can confirm that
a user has a particular role (admin or member). It also allows changing the roles of members in
the system.

The actual implementation of the interface uses the Token property on the member class to
create and invalidate tokens for the user and uses the property IsAdmin to determine the role of
the specific Member. It also hashes and creates salt for the users’ passwords, so we do not store
them as plaintext. The implementation of the latter can be seen in listing 8.10.

1 private byte[] Hash(string value , string salt)

2 {

3 return Hash(Encoding.UTF8.GetBytes(value), Encoding.UTF8.

GetBytes(salt));

4 }

5
6 private byte[] Hash(byte[] value , byte[] salt)

7 {

8 byte[] saltedValue = value.Concat(salt).ToArray ();

9 return SHA256.Create ().ComputeHash(saltedValue);

10 }

11
12 private string GenerateSalt () {

13 return Convert.ToBase64String(Guid.NewGuid ().ToByteArray ());

14 }

15
16 public string HashPassword(string password)

17 {

18 string salt = GenerateSalt ();

19 string hash = Convert.ToBase64String(Hash(password , salt));

20 return salt+":"+hash;

21 }

Listing 8.10: Hashing and Salting the Passwords of Users

In the MemberController seen in listing 8.11, we can then add methods to the API to access
this authentication token from our AuthenticationServices.

All in all, this allows a client to connect to SERVERURL/api/member/login in order to gain an
authentication token and SERVERURL/api/member/logout to remove an authentication token.

1 [Route("api/member")]

2 public class MemberController : Controller

3 {

4 private readonly IAuthenticationService _authenticator;

5 private readonly IRepository <Member > _memberRepository;

6
7 public MemberController(IRepository <Member > memberRepository)

8 {

9 _memberRepository = memberRepository;

10 _authenticator = new AuthenticationService(

_memberRepository);

11 }

88

Chapter 8. Implementation 8.1. Server-side

12
13 [...]

14
15 // GET: /api/member

16 [HttpGet]

17 public ApiResponse <string > Login(string username , string

password)

18 {

19 if (string.IsNullOrEmpty(username))

20 {

21 return new ApiErrorResponse <string >("Login failed -

Invalid username or password");

22 }

23 string token = _authenticator.Login(username.ToLower (),

password);

24
25 if (string.IsNullOrEmpty(token))

26 {

27 return new ApiErrorResponse <string >("Login failed -

Invalid username or password");

28 }

29
30 return new ApiSuccessResponse <string >(token);

31 }

32
33 // GET: /api/member

34 [HttpGet]

35 public ApiResponse <string > Logout(string token)

36 {

37 _authenticator.Logout(token);

38
39 return new ApiSuccessResponse <string >("Logout successful")

;

40 }

41
42 [...]

43 }

Listing 8.11: MemberController class

On the client side, the token is saved in a cookie, such that the user stays logged in if they
leave the page and come back later. This also means that if a user is logged in, a token is saved
in their cookies. We can then use this to check if they are allowed access to certain parts of the
system. To make the process of restricting access to views as simple as possible in our code we
created an attribute RequiresAuthAttribute, which takes a number of roles as an argument,
so only members that have one of the roles are authorised to access the view.

An example of the use of the attribute can be seen in listing 8.12. The attribute on line 3
makes sure that only users who are authenticated (logged in) can access the ”new-route” page
of the system.

1 // GET: /new -route

89

Chapter 8. Implementation 8.1. Server-side

2 [HttpGet("new -route")]

3 [RequiresAuth(Role.Authenticated)]

4 public IActionResult NewRoute () {

5 return View("Views/NewRoute.cshtml");

6 }

Listing 8.12: Example usage of RequiresAuthAttribute

8.1.5 Search

In this section, the implementation of the search functionality is described. A justification of the
algorithm chosen to help the search functionality is also presented.

Comparison of Alternatives

There exist multiple string metrics for calculating the distance between two string sequences.
Following is a description of a few such algorithms, along with their advantages and disadvan-
tages.

Knuth-Morris-Pratt

Knuth-Morris-Pratt is a string searching algorithm, that works best on a short pattern (the word
you search for) and a long text (the words the pattern is compared to). However, this is not the
situation in our system, where neither pattern nor text will be long. This algorithm differs from
the naive approach by saving data from comparisons and makes use of this knowledge to skip
some iterations of comparisons. It only searches for an exact match of the pattern in the text,
which rules out spelling mistakes (of Information and Sciences, 1996).

Boyer-Moore

Boyer-Moore is an algorithm that compares the last character of the pattern instead of the
first, since if the last character does not match, it can shift the pattern to the right. How
much the pattern is shifted, is based on whether or not the character in the text is in the
pattern or not. If it is not in the pattern, then the pattern’s first character is shifted and now
compared to the character in the text, following the one that produced a mismatch (d’électronique
et d’informatique Gaspard-Monge , IGM). Because of these shifts, the algorithm is optimal to use
on a long text, since it allows for some large shifts. This algorithm does not tolerate misspellings.

Levenshtein

The Levenshtein distance is a measure of the minimal amount of units it takes to go from one
word to another by using additions, deletions and substitutions of characters. The cost of each of
these operations can be changed to fit the situation. The Levenshtein distance is not an algorithm
as the two previously described, but there exists algorithms, that calculate the distance between
two strings according to the Levenshtein principle. There also exists a modification of the Lev-
enshtein distance, called Damerau-Levenshtein, which implements a fourth edit operation called
a transposition of two adjacent characters. Damerau only considered words with a single mis-
spelling or missing letter (Damerau, 1964). Since we now look at the edit distance (approximate
match, fuzzy logic) and not for an exact string match, we now tolerate misspellings (Allen, 2016).
The naive, recursive approach of calculating the Levenshtein distance is not very efficient since

90

Chapter 8. Implementation 8.1. Server-side

it computes the same problems multiple times (of Computer Science Old Dominion University,
2013).

Choosing a Method

Primarily based on the fact, that we want multiple misspellings to be tolerated, we have to
disregard the advantages of the Knuth-Morris-Pratt, Boyer-Moore, and Damerau-Levenshtein
method. This leaves us with the Levenshtein method.

The mathematical piecewise function can be seen below, assuming that each operation has a
cost of 1 (Berger-Wolf, 2016).

leva,b(i, j) =


max(i, j) if min(i,j)=0,

min


leva,b(i− 1, j) + 1

leva,b(i, j − 1) + 1

leva,b(i− 1, j − 1) + 1ai 6=bj

otherwise
(8.1)

Wagner-Fischer - Based on Levenshtein

Wagner-Fischer is an algorithm that makes use of Levenshtein distance together with dynamic
programming. The dynamic programming approach makes calculating the edit distance efficient,
while the algorithm is still able to be modified according to what it is to be used for. Our
implementation of the algorithm can be seen in listing 8.13.

1 private static int _computeLevenshtein(string pattern , string

text)

2 {

3 if (string.IsNullOrEmpty(pattern) || string.IsNullOrEmpty(

text))

4 {

5 return 0;

6 }

7
8 const int cost = 4;

9 int m = pattern.Length;

10 int n = text.Length;

11 int[,] d = new int[m + 1, n + 1];

12
13 pattern = pattern.ToLower ();

14 text = text.ToLower ();

15
16 //Fill first column

17 for (int i = 0; i <= m; d[i, 0] = cost * i++) ;

18 //Fill first row

19 for (int j = 0; j <= n; d[0, j] = 1 * j++) ;

20
21 for (int j = 1; j <= n; j++)

22 {

23 for (int i = 1; i <= m; i++)

24 {

25 if (pattern[i - 1] == text[j - 1])

91

Chapter 8. Implementation 8.1. Server-side

26 {

27 d[i, j] = d[i - 1, j - 1];

28 }

29 else

30 {

31 d[i, j] = Math.Min(

32 Math.Min(

33 d[i - 1, j] + cost , // Deletion

34 d[i, j - 1] + 1), // Insertion

35 d[i - 1, j - 1] + cost); // Substitution

36 }

37 }

38 }

39 return d[m, n];

40 }

Listing 8.13: Our version of the Wagner-Fischer algorithm

As seen in lines 8 and 33-35, we set our cost to be 4 for deletion and substitution, but only 1
for additions. This is because we want to penalise misspellings and typos, while also wanting it
to show results while only receiving a substring, e.g.: typing Al should make all routes created
by Alice pop up.

To make each route keep track of its own distance, we created a Tuple object, which holds
a route object and a float type representing the Levenshtein distance. After computing the
Levenshtein distance for all routes based on a specific search input, the routes are then sorted by
the one which has an attribute, that has the lowest distance to the sought word. The attributes,
that the users can search for are a route number, a section name, a grade colour and a route
author. If the search includes multiple words (separated by one or more spaces), the distance
for each search term is calculated for each route. These distances is then added to each route,
and then sorted as described before.

The system also implements minor methods for improving the search mechanism, such as:

• If a search includes a single letter followed by one or more digits, e.g. A4 (meaning route
4 in section A), a method splits the two and search for each.

• If a search includes a keyword such as author, the following word is only compared with a
routes author attribute and not the rest of its attributes.

• A method to make the search input case insensitive.

• A threshold that ensures no routes show up, if the Levenshtein distance between two strings
is above the threshold.

Complexity of the Wagner-Fischer Algorithm

The complexity of Wagner-Fischer is Θ(qp) where p is the pattern length, and q is the search
length. In order to find the best matching route, we evaluate every route against q and sort
them by the calculated Levenshtein distance which with n routes make the complexity Θ(nqp).
The sorting algorithm used is a quicksort variant implemented in the LINQ library. Quicksort
has an average time complexity of O(n log n). This makes our average-case time-complexity
O(nqp + (n log n)) for the entire search. As the amount of search-able content p is determined
by the length of four factors:

92

Chapter 8. Implementation 8.2. Client-side

• The route’s number (less than four characters).

• The section’s name (very likely one character).

• The name of the grade (usually less than 10 characters).

• The name of the route setter (assumed to be shorter than 40 characters).

All in all p will in a real world scenario, very likely be less than 100 characters. If q is ever
longer than p, the search algorithm only gives less results than if it was using the exact number
of characters or less. This bounds the length of q to p. This leaves n as the only factor that
realistically have any impact, which means that in practice the algorithm is most likely upper
bounded by n log n. If we were to enforce limits on the length of q and p, we could theoretically
have a correct average time complexity of O(n log n).

8.2 Client-side

In section 6.3, the client service component and its responsibilities were explained. In this section,
we describe how we implemented the client in the system, as well as the user interface which users
of the system primarily interacts with. We will also explain how we implemented comments, beta
and route images.

8.2.1 Distribution

The specific client we have implemented in this project is distributed as a website. This means
that anyone with a web browser can access the service. The specific browser and its version
may determine if the website is rendered correctly as some of the features we use to present the
page are not available in older browsers. The website is hosted on the same server as the server
component of the system. This is not ideal as it makes the server accessible directly instead
of through the public interface of the API. We use this on the server side to check if a user is
authenticated before sending the view back to the browser. This could be done via the public
API and as such this is an example of a bad practice used in the system.

1 public class ViewController : Controller {

2 public IAuthenticationService AuthenticationService;

3
4 public ViewController(IRepository <Member > memberRepository)

5 {

6 AuthenticationService = new AuthenticationService(

memberRepository);

7 }

8
9 // GET: /

10 [HttpGet]

11 public IActionResult Routes () { return View("Views/Routes.

cshtml"); }

12
13 ...

14
15 // GET: /new -route

16 [HttpGet("new -route")]

93

Chapter 8. Implementation 8.2. Client-side

17 [RequiresAuth(Role.Authenticated)]

18 public IActionResult NewRoute () { return View("Views/NewRoute.

cshtml"); }

19
20 ...

21
22 // GET: /sections

23 [HttpGet("admin -panel")]

24 [RequiresAuth(Role.Admin)]

25 public IActionResult Sections () { return View("Views/

AdminPanel.cshtml"); }

26
27 ...

28 }

Listing 8.14: The ViewController on the server, responsible for serving the views to the users
browser

In listing 8.14 it is important to note that it has access to a IRepository<Member> which it
uses through the RequiresAuthAttribute class to directly check if the token in the requesters
cookie matches an authenticated user in the model instead of sending a request to the public
API.

8.2.2 Client

As seen in listing 8.15, the system has a Client object. This object aggregates a RouteClient,
SectionClient, GradeClient, MemberClient, and HoldClient each of whom is responsible for
communicating with their respective controllers as previously illustrated in figure 6.8.

1 function Client(routeUrl , sectionUrl , gradeUrl , memberUrl ,

cookieService)

2 {

3 this.routes = new RouteClient(routeUrl , cookieService);

4 this.sections = new SectionClient(sectionUrl , cookieService);

5 this.grades = new GradeClient(gradeUrl , cookieService);

6 this.members = new MemberClient(memberUrl , cookieService);

7 this.holds = new HoldClient(holdUrl , cookieService);

8 }

Listing 8.15: Clients

To send, retrieve, and update information in the server, we use asynchronous JavaScript and
XML (AJAX). Listing 8.16 shows an example of an AJAX request. In the code snippet, we see
that an HTTP GET request is made to the server and the data type response from the server is
JSON. Furthermore, we also specify the data to be sent to the server and what URL the request
should be sent to. At last, we specify the success parameter which is the function to be executed
if the request succeeds.

1 this.getSection = function(name , success)

2 {

3 $.ajax({
4 type: "GET",

94

Chapter 8. Implementation 8.2. Client-side

5 dataType: "json",

6 url: url + "/" + name ,

7 data:

8 {

9 name: name

10 },

11 success: success

12 });

13 };

Listing 8.16: Method for getting a section from the server

The client objects contain a variety of different methods, similar to the one shown above, for
sending and receiving data to and from the server.

8.2.3 Implementing the User Interface

Inspired by the Model-View-View-Model (MVVM) pattern (Microsoft, 2012), we chose to sep-
arate code for each page in the user interface into two main components: a view and a view
model. We did this to separate code that implements the representational design from the code
that implements the state and logic of the user interface.

View Models

To enable the use cases described in section 5.1.2, we created view models to store information
about the states in the different use cases as well as functions for each action that can be per-
formed in the use cases. We will now, based on the use case 5.2, show how we have implemented
view models.

The Viewing Route Information use case has two overall states. In the first state, the actor
can search and filter the list of routes that are available in the system, as well as sort the routes
presented to them. To represent this state, we create a view model class called RoutesViewModel.
The information that describes this state is stored as attributes on the RoutesViewModel class.
The different methods of the RoutesViewModel class are shown in figure 6.5.

The list of routes is stored in the route’s attribute, which is updated in the refreshRoutes

function according to the current value of the selectedGrade, selectedSection, and
selectedSortBy attributes. The value of these attributes is changed by the changeGrade,
changeSection, or changeSortBy functions, to one of the available values in the grades, sec-
tions, or sortOptions lists. Instead of filtering routes by specific options, the search function
updates the routes attribute to a list of routes that matches a given search string without
applying any of the filters or search order. To provide these actions, the RoutesViewModel is
dependent on a client instance that has functionality for receiving routes from the Controller.
This dependency is injected by the constructor of the RoutesViewModel and enables different
implementations of a client instance to be used by the view model. This also enables the use
of a mock-up client instance, for unit testing the view model without interfering with other
components.

An important part of each view model is the EventNotifier function, which has three
sub-functions: addEventListener, trigger, and removeEventListener. This enables other
components such as views to add an event listener to certain events that are triggered by the
view model.

95

Chapter 8. Implementation 8.2. Client-side

Views

The last component in our system’s dependency chain is the view component. This component
has the responsibility for the representational design of the system. Representational design
concerns the style and layout of how information is presented to the user (Benyon, 2014, p. 54).
For each view model there is a corresponding view that visualises the information stored in the
view model. In our system, the view consists of two components. The first component is a set of
HTML handlebars.js templates (Katz, 2016). The second component is a code behind JavaScript
file that adds event listeners to the view model, which renders the template with the latest state
of the view model when it triggers certain events.

For the RoutesViewModel, the corresponding view is represented by the two files Routes.cshtml
and routes.js. A part of the template for the list of routes is shown in listing 8.17.

1 <div class="content -section route -list">

2 <div>

3 <h2>Number of Routes: {{ routes.length }}</h2>

4 </div>

5 {{# each routes }}

6

7 <div class="route -card">

8 <div class="route -card -top">

9 <div class="route -grade -number">

10 <span class="number" style="background -color:

rgb({{ grade.color.r}},{{ grade.color.g}},{{

grade.color.b}})">

11 <div style="{{# if_light grade.color}} color

: black {{/ if_light }}">

12 {{name}}

13 </div>

14

15 </div>

16 Section: {{ sectionName

}}

17 ...

18 {{/ each}}

Listing 8.17: Shows the first part of the route-list-template that renders the route number, grade
colour and section for each of the routes in the list.

Listing 8.17 shows how Handlebars.js syntax is used to implement a template for representing
the list of routes stored in the view model. At line 3, we use the {{attribute}} syntax to specify
that when the template is rendered with the current state of the view model it should replace
{{routes.length}} with the current value of routes.length. This inserts the number of routes
currently stored in the view model. At line 5, we use the {{#each}} attribute syntax to render
each route in the routes attribute. Between {{#each routes}} and {{/each}}, we implement a
template that is rendered for each route. At line 6, {{id}} now refers to the id attribute of a
single route object. This is similar for name/number of the route at line 12 using {{name}} and
the name of the section {{sectionName}} at line 16.

The template shown in code snippet 8.17 is rendered when the routesChanged event is trig-
gered by the RoutesViewModel. This is configured as shown in listing 8.18.

96

Chapter 8. Implementation 8.2. Client-side

1 var client = new Client(API_ROUTE_URL , API_SECTION_URL ,

API_GRADE_URL , API_MEMBER_URL , API_HOLD_URL , new

CookieService ());

2 headerViewModel = new HeaderViewModel("Find Route", client);

3 viewModel = new RoutesViewModel(client , new LoadingService ());

4
5 var configurations = [

6 ...

7 {

8 scriptSource: "js/templates/route -list -template.

handlebars",

9 elementId: "routes -content",

10 event: "routesChanged",

11 viewmodel: viewModel

12 }

13];

14
15 setUpContentUpdater(configurations , function () {

16 viewModel.init();

17 headerViewModel.init();

18 });

Listing 8.18: Shows how the route-list-template is configured to be rendered into an HTML
element that has ”routes-content” as id when the view model triggers the routesChanged event.

For each template used in the view there is an object that stores information about the
connection between the template and the corresponding view model. This is shown for the
route-list-template at line 7-12, where scriptSource is the path to the file containing the template.

elementid is the id of the HTML element that the template is rendered into, located in
Routes.cshtml.

event is the event(s) triggered by the view model that causes the template to render the
newest state of the view model.

The configurations for all the templates in the view is assigned as an array to the variable
content at line 5 and passed to the setUpContentUpdater function at line 15 which ensures that
all the configurations are initialised.

8.2.4 Implementing Route Images

One of the should-have requirements from the MoSCoW analysis was that ”the system should
allow members to add an image of a route”. While designing the model component in section
6.3.1, we modelled a route such that a route aggregates one image, and the image aggregates a
number of holds.

This structure is mirrored in our code such that a route contains one image, and the image
contains a list of holds. Listing 8.19 shows the Image class’ properties. The Image class inherits
the FileUrl property from the Media class. The FileUrl will contain the reference to the image
file, which will either be a URL pointing to a file, or a data URI containing a base64 encoded
image.

1
2 public class Media : Model

3 {

97

Chapter 8. Implementation 8.2. Client-side

4 public string FileUrl { get; set; }

5 }

6
7 public class Image : Media

8 {

9 public Image ()

10 {

11 Holds = new List <Hold >();

12 Id = Guid.NewGuid ();

13 }

14
15 [JsonIgnore]

16 public Route Route { get; set; }

17
18 public Guid RouteId { get; set; }

19
20 public uint Width { get; set; }

21
22 public uint Height { get; set; }

23
24 public virtual List <Hold > Holds { get; set; }

25 }

Listing 8.19: Properties in the Image class

While climbing, we noticed that because of the sheer number of holds on the climbing walls,
it was sometimes difficult to find the next hold on the route. While some would argue that this is
part of the challenge of climbing, we noticed that because we were novices in the climbing club,
we accidentally used parts of other routes because we thought that they were part of the route
that we were climbing.

To combat this problem, we wanted to give the members of the climbing club the ability to
show the locations of the holds on the image of the route. To do this, we created a JavaScript
object called RouteCanvas which transformed a HTML canvas element into an image of the route
where they could click on the holds, and the hold would be added to the image.

When no image is added, the member can choose to add one as shown in figure 8.3a. When
the member has chosen an image from their phone or taken one with their camera, that image
is shown as illustrated in figure 8.3b. After that, the user can add holds by clicking on them on
the image, after which they will show up on the image as illustrated in figure 8.3c.

98

Chapter 8. Implementation 8.2. Client-side

(a) Before adding an image to
the route

(b) After choosing an image
from phone storage or camera

(c) After adding holds to the
image

Figure 8.3: Process of adding an image to a route.

The holds are saved separately to the image, which makes undo-functionality very easy to
implement, as we can treat our holds as a stack, and when the undo button is pressed, we simply
pop our stack. The code for this functionality is shown in listing 8.20.

1 RouteCanvas.prototype.undo = function () {

2 if (this.viewModel.HoldPositions.length){

3 this.viewModel.HoldPositions.pop();

4 }

5 this.latestClick = null;

6 this.DrawCanvas ();

7 }

Listing 8.20: Undo funcionality of RouteCanvas

To make sure that the RouteCanvas always represent the ViewModel that is in charge of the
current view, we added the following line to the RouteCanvas:

1 this.viewModel.addEventListener("HoldsUpdated", this.DrawCanvas);

What this does is that whenever the hold positions are changed in the ViewModel and the
ViewModel triggers the HoldsUpdated event, the canvas will redraw with the newest holds. This
also means that instead of keeping track of the hold positions in the RouteCanvas, we use the
ViewModel to add and remove holds to make sure that there is no syncing problem between the
objects. In listing 8.21, it can be seen how the ViewModel triggers the HoldsUpdated event that
the RouteCanvas is subscribed to.

1 this.addHold = function(hold)

2 {

99

Chapter 8. Implementation 8.2. Client-side

3 self.HoldPositions.push(hold);

4 self.trigger("HoldsUpdated");

5 }

Listing 8.21: Viewmodel triggers custom event

Originally, we implemented the RouteCanvas such that to draw a circle on the image, you
would touch where the centre of the circle would be, and then drag your finger such that the
distance from the centre to your finger would be the radius of the circle. This worked very well
when we tested it locally on our computers with a mouse, but when we tested it on a smartphone,
we found that it was not intuitive, it was difficult to see how large the circle was due to your
finger blocking your vision, and lastly; it was very easy to accidentally add a hold, when you
actually meant to scroll up or down on the page.

So we chose to implement the canvas in such a way that the holds are added when you touch,
and then every subsequent touch on the hold will make the radius larger.

8.2.5 Implementing Comments and Betas

As mentioned in section 6.3.1, we wanted to represent video betas as parts of comments, instead
of individual objects. The reason for this choice was that we wanted to be able to merge a text
comment and video beta in a shared feed. We wanted to have this functionality to promote the
use of the comments for being more than commenting on route design. We wanted the comments
to be a place where members of the climbing club can ask for help as well as receive it.

Originally, we designed the video betas as being on top of the page, where the users could
scroll through them. This is illustrated on figure 8.4a. Under the route information would be
the video betas that the member could scroll through, to easily find videos that would help them
climb a route.

The reason we only have video betas and not audio or image betas, is because a video is the
only medium that makes sense to use for teaching other members how to climb a route, other
than a comment. To maximise the ability for members to help each other in the comments, we
needed video betas to be a part of those instead of being separate.

100

Chapter 8. Implementation 8.2. Client-side

(a) First idea layout containing comments
and betas

(b) Better layout containing comments
and betas together

Figure 8.4: Different layouts of comment/beta section.

Figure 8.4b shows the other layout where comments and betas are merged in the feed. The
figure illustrates how having the video embedded in the comments offers the ability to use the
video as a response to other members’ questions about a route, instead of just adding general
betas to the route.

Implementing this in the system was simply a matter of adding a Video object to the Comment
object, and display the video object on the front-end if it was present.

The layout made it possible to use a single place for uploading both betas and comments.
We simply added a video icon to the comment form, and upon the button being pressed, it
would open a dialogue window, asking to specify which application to use for uploading a file.
This could e.g. be opening their camera. If the camera was selected, the user would be able to
select/record a video, that would then be embedded in the comment.

Summary

In this chapter the description of how the model classes were created using C# and mapped to
tables in an SQLite database using Entity Framework, Code First, was presented. Furthermore,
logging in to the system was described along with the token authentication process related
to it. Through code listings it was shown how an IAuthenticationService interface in the

101

Chapter 8. Implementation 8.2. Client-side

MemberController class stores a token in the database, in order to authenticate users. In section
8.1.5 the three algorithms, Knuth-Morris-Pratt, Boyer-Moore, and Wagner-Fischer, all related
to searching were analysed. Based on the advantages and disadvantages of each algorithm the
Wagner-Fischer algorithm was chosen. It relies on dynamic programming to compute the edit
distance of two strings. A general implementation of an API response was shown, and it was
explained how the client uses AJAX requests to send and receive data to and from the server.
Furthermore, the user interface, and how different events in the viewmodels update the views,
were explained. In section 8.2.4 support for images in the system was illustrated. In addition to
this, it was shown how that that the system also supported the marking of holds in the images.

As the implementation of the system became realised, it also became necessary to test the
code regularly, as described in the next chapter.

102

Chapter 9

Testing

In this chapter, some theory behind software testing is covered and the way in which the different
parts of the system were unit tested, is described. This is done by selecting different unit test
frameworks for testing. Furthermore, how the frameworks were used to create tests for the
system, is shown using code snippets and test results.

The choice of unit testing both the front and back-end is explained and described. Reasons
for using unit testing, such as to make sure new changes did not break existing functionality
before usability tests, are also described in the chapter.

9.1 Purpose of Testing

It was decided to do unit testing for both the front-end and the back-end of the system, since we
did not want existing features to break when we added new features or changed our implemen-
tation in each iteration. The exception to this, was when we changed or added features that we
knew would cause existing tests to fail, in which case, the affected tests needed to be updated.

The intention of unit testing is to split up the code into smaller parts and test those inde-
pendently from the rest of the project to see if they behave as expected (Microsoft). Unit tests
were especially useful to check if new changes broke existing functionality in a way we did not
expect them to, before conducting our usability tests. Using unit tests also saved a lot of time
that we would otherwise have spent checking if our programme worked as intended, since unit
tests automates this process (Burke and Coyner, 2003).

Testing our software, is also part of this semester’s curriculum (Thomsen, 2015, p. 22).

9.2 Unit Testing Frameworks

According to the curriculum, the code written must be tested to ensure that the code works
(Thomsen, 2015). We decided to unit test the project as this will allow us to pinpoint where
the errors in our codebase are, by testing each individual part of the system. To unit test our
C# backend, there are multiple frameworks that can provide ways to write unit tests efficiently,
examples of these frameworks are NUnit, MSTest, and xUnit.net. We decided to use NUnit to
unit test our system, as it integrates nicely with ASP.NET Core, and all group members have
worked with this framework before. After installing this framework into our project, it can be
run easily with the command “dotnet test”.

103

Chapter 9. Testing 9.2. Unit Testing Frameworks

We can use NUnit to test our APIs and database, but as substantial part of our system is in
our viewmodels, we need to test those as well. Here we have decided to use the JavaScript unit
testing framework QUnit.

9.2.1 NUnit

NUnit is a testing framework for the .NET platform (NUnit, 2016), and can be used for ASP.NET
Core projects. The testing framework provides easy ways to determine whether the output of
the system is as expected, and more advanced methods to determine if a method throws the
correct exceptions, given a certain input.

For .NET Core, the testing framework can be included to the project by adding a few ad-
ditional lines into the Project.json file, since the testing framework is a nuget package (NUnit,
2016). This allows for testing by adding Using NUnit.Framework;. Before the test class, an
attribute called [TestFixture] needs to be added in order to tell the framework that the class
contains unit tests.

NUnit also allows for setup and tear down methods, which can be used to initialise variables
used for each test, and remove the values from each variable once each test has run. This is
necessary since each test needs to run in a clean environment. The attribute that needs to be
added to each method in order to specify whenever the method is used to set up the environment,
and to tear it down, is called [SetUp] and [TearDown] respectively.

Each test needs an attribute called [Test] in order to specify that the method is a test.
A simple test class without making use of the optional [SetUp] and [TearDown] attributes,

would look like listing 9.1

1 using NUnit.Framework;

2
3 namespace Tests

4 {

5 [TestFixture]

6 public class TestClass

7 {

8 [Test]

9 public void Method_Input_ExpectedResult ()

10 {

11 var result = Method(Input);

12 Assert.IsTrue(result == ExpectedResult);

13 }

14 }

15 }

Listing 9.1: Simple test class with one test

9.2.2 QUnit

QUnit is a JavaScript unit testing framework created by the JQuery foundation and is used for
testing JQuery, a JavaScript library which was used on 61 percent of the most popular websites
in 2014(Methvin, 2014).

The framework itself is a webpage, which will execute the unit tests and show the results.
Figure 9.3 shows an example, of how this page can look.

104

Chapter 9. Testing 9.3. Controller Test

The QUnit tests are very versatile. They work by calling the QUnit.test function that takes
another function as a parameter. That function will then be executed in the test, and in that
function you can make calls to the assert function which will be used to determine if the test
succeeds or fails. The example provided by the QUnit documentation can be seen in listing 9.2.

1 QUnit.test("hello test", function(assert) {

2 assert.ok(1 == "1", "Passed!");

3 });

Listing 9.2: QUnit example from documentation

9.3 Controller Test

In this section, selected unit tests for the controller methods is shown and explained. These tests
help us solve and discover previously unseen bugs.

When creating a programme, it is important that it works, and works well. We can help
ensure this by creating unit tests for each public method in our programme, to make sure these
methods work as intended.

The programme contains the following controllers: Section Controller, Route Controller,
Grade Controller, Member Controller, and Hold Colour Controller.

To create the tests, we used the NUnit testing framework. All of the unit tests can be found
in the electronic appendix inside the Tests directory.

Figure 9.1: The last part of the output of ”dotnet test”.

For each controller in the system we created multiple unit tests. Figure 9.1 shows the output
from the terminal when running “dotnet test”, to run the tests.

105

Chapter 9. Testing 9.3. Controller Test

9.3.1 Section Controller

The section controller is what allows a client to manipulate sections and their routes in the model.
One of the methods of the SectionController is the GetAllSections method, which returns
all sections in the system, ordered by their name. To test if this method works as intended, we
compare the value we get after calling the method, with the actual repository, to see if we got
the expected amount of sections returned. Another test, tests to see if we also got the same
amount of routes, because if we do not, the system is not working as intended. We then use
the method CollectionAssert.AreEquivalent on the two collections, in order to check if they
are equivalent. If both tests pass, then we assume that the method GetAllSections, works as
intended.

9.3.2 Route Controller

The route controller, is what allows a client to manipulate routes. This controller specifies
methods such as AddRoute, DeleteRoute and GetRoutes.

The last-mentioned method might at first glance seem like it takes many arguments, but most
of them are null-able. By default, the GetRoutes method returns all routes if everything but the
sortOrder is null.

To test this method, several tests have been created to see if only the routes specified by the
input values, get returned. In the first test, only the sortOrder is specified. In the next, grade
has also been specified, and so on. The test, where sectionId has been specified, can be seen
below:

1 [Test]

2 public void _GetRoutes_GettingRoutesFromSectionWithID

3 _ExpectOnlyRoutesFromThatSection ()

4 {

5 var section = _sectionRepo.GetAll ().First();

6 var response = _controller.GetRoutes(null , section.Id ,

null , 0, SortOrder.Newest);

7 var routes = response.Data;

8
9 Assert.IsTrue(response.Success);

10
11 CollectionAssert.AreEquivalent(section.Routes , routes);

12 }

Listing 9.3: RouteController unit-test for the GetRoutes method

In listing 9.3, we find the first section in the system, then call the GetRoutes method with
the found section.Id. We then check to see if the method actually did what was required of it,
by asserting that the Success property is true. Finally, we expect the routes in the section and
the data we received through the return-value to be equal, so we compare the two collections.

9.3.3 Grade Controller

The grade controller handles the grades in the system and specifies methods such as AddGrade

and DeleteGrade.
Testing these methods required creating a new Grade, so to test the DeleteGrade method,

it was easier to first test the AddGrade method. We did this, by creating a Grade object, then

106

Chapter 9. Testing 9.4. Client Service Tests

calling the method and checking its return-value to see if it corresponds to the Grade, we just
added.

Since these tests passed, we could just try and call the DeleteGrade method to remove the
Grade, then try and find it in the grade repository. If no such grade could be found, the grade
got deleted from the system.

9.3.4 Member Controller

The member controller handles the registered users of the system and specifies methods such as
Login and Logout.

Testing these methods can be done by inputting a username and a password for an already
existing member in the system, then check if the token received gets assigned to that member.
This token is proof that the member is now authenticated, and allows them to call methods such
as AddRoute, from the route controller. Testing if the token allows a member to do so, is tested
in tests for the other controllers, since those methods requires an authenticated user to call them.
The Logout method can be tested by calling the method for an already authenticated user, and
see if the Token property, gets assigned to null.

9.3.5 Hold Color Controller

The Hold color controller handles the the colours of the holds which a user can choose between,
for a route. This controller was necessary to create so that a user of the system, would not be
able to add an arbitrary hold colour to a route. This also allows an administrator to add new
hold colours and delete existing ones.

The hold color controller specifies methods such as AddHoldColor and DeleteHoldColor.
These methods can be tested in similar way as the AddGrade and DeleteGrade methods, and
how to do this, is described previously in section 9.3.3.

9.4 Client Service Tests

In this section we describe how we tested the client service component. The responsibility of the
client service component is to make the interface for the server-side API available at client-side.
Because each method in the client service component is just a single web request to a service-side
controller method then it is difficult to unit test the client service component alone. Instead we
are interested in testing the connection between the client service component and the controller
component. We also chose to use this test to validate changes in the API by checking the data
responded from the API. We do not test all the 30+ methods in the client service component.
We focused on testing the methods that concerns authentication and administration of routes
because these are the methods that affects most users if there should be any bugs in these.

1 QUnit.test("Client tests", function(assert) {

2 var client = new Client(API_ROUTE_URL , API_SECTION_URL ,

API_GRADE_URL , API_MEMBER_URL , API_HOLD_URL , new

CookieService ());

3 var done = assert.async();

4 login(assert , done , client);

5 });

Listing 9.4: Instantiating the client service component for testing and invokes the register test
function.

107

Chapter 9. Testing 9.5. View Model Unit Tests

Because all methods of the client service component runs asynchronously we use assert.

async() to store a function that is executed after the last test to inform QUnit that all tests are
done. The tests is divided into the following functions: login, getAllSections, getAllGrades,
addRoute, updateRoute, getRoutes, getRoute, getImage and deleteRoute. A part of the test
result is shown in figure 9.2. A more comprehensive list of the test results is shown in appendix
G.

Figure 9.2: Shows a part of the test result for the client service component.

9.5 View Model Unit Tests

In this section, we explain how we conducted tests for the view model component using the QUnit
framework. The view models in the system, are: NewRouteViewModel, EditRouteViewModel,
FindRouteViewModel, AdminPanelViewModel, RegisterViewModel, RouteInfoViewModel, and
LoginViewModel. In order to test the view models, we focused on two things; checking if events
got triggered in the view model and that functions worked as expected e.g. that properties
changed correctly.

To demonstrate how we tested the view models, we look at an example from the tests we
conducted on the FindRouteViewModel. On lines 3-5 in listing 9.5 we add an eventlistener that
sets a local boolean variable to true if the event sectionsUpdated is triggered. On line seven we
call the function downloadSections which in the system requests the client to get all sections
from the database. However for this test case, we made a test client that returned a number of
predefined routes. We did this because we did not want our view model tests to be dependent
of the client, and because the client uses asynchronous functions, which meant we do not know
when the functions in the view model, gets triggered. After having called the downloadSections
function to trigger the sectionsUpdated event, which downloads a list of sections from the database
to the view model, we check how many sections we have in our view model that correspond to
the predefined sections (line 11-14). On line 16, we then check if the number of sections in the
view model is the same as the number of predefined sections, and on line 18 we check if the event
sectionsUpdated was successfully triggered.

1 var sectionUpdatedTriggered = false;

2
3 viewModel.addEventListener("sectionsUpdated", function () {

4 sectionUpdatedTriggered = true;

5 });

6
7 viewModel.downloadSections ();

8
9 var times = 0;

10 if (viewModel.sections.length > 0) {

108

Chapter 9. Testing 9.5. View Model Unit Tests

11 for (var i = 0; i < viewModel.sections.length; i++) {

12 if (viewModel.sections[i] == TEST_SECTIONS[i]) {

13 times ++;

14 }

15 }

16 assert.equal(times , viewModel.sections.length , "

RouteViewModel downloadsections");

17 }

18 assert.equal(sectionUpdatedTriggered , true , "RouteViewModel

sectionsUpdated triggered");

Listing 9.5: Unit test example for the FindRouteViewModel

For each view model in the programme we conducted similar tests. Figure 9.3 shows a part
of the rest result.

Figure 9.3: The unit tests for the ViewModels.

Summary

In this chapter, it was briefly described which unit testing frameworks were used to test the system
and its methods. These unit tests allowed focusing on developing without fear of accidentally
breaking existing features without realising it. The fact that both the front end and back end of
the system were unit tested was discussed, and the reason behind it explained.

109

Chapter 9. Testing 9.5. View Model Unit Tests

Testing was described as a way to make sure existing features worked the way they were
intended, even when new features were implemented, so there was a reliable way to find out if
the system worked, when conducting the usability evaluations as described in the next chapter.

110

Chapter 10

Usability Evaluation

In this chapter, the system is evaluated. First, different methods for evaluating a software system
are described. It is then explained how some of those methods are used to test our system. The
usability evaluations of the system that were conducted are also described and their findings
shown and analysed.

10.1 Usability

Usability is essential for good interaction design. An example of good usability through affordance
is a button, which looks like other buttons, be it in the real world or in software. We know from
experience that buttons afford being pressed. If an interactive element in software resembles a
button, we expect that it is press-able. As described in section 7.4.1 the design of the system is
based on Google’s Material Design, which means that users are at least somewhat familiar with
the design of the interactive elements in the system. It follows that a user interface element
that looks press-able but is not, is considered bad design. According to Benyon (2010, p.80-94),
a system is often defined as usable if it possesses the following properties:

• Efficiency: achieving results in an appropriate amount of time.

• Safety of use: can safely be operated in the contexts it is being used in.

• Utility: the ability to solve a given problem.

• Ease of use: how easy the system is to use for people new to the system and people
experienced with it.

10.1.1 Usability Testing

Testing for good usability has become essential in later years since nobody wants to buy a piece
of software, which its users find frustrating to use. During the development of a system, it is im-
portant that the developers conduct usability testing during the different phases of development.
If they do not, they run the risk of having a finished design, that does not fulfil the requirements
of a system with good usability. This may severely limit the competitiveness of the system and
potentially mean having to re-do several parts of it.

Testing for usability becomes relevant almost as soon as the requirements of the system have
been found. The testing should then happen throughout the preliminary design phase, and

111

Chapter 10. Usability Evaluation 10.1. Usability

ideally every time major changes are made to the system. There exist a few methods for doing
this, two of which is described below.

Heuristic Inspection can be done by usability experts, which means that there is a possibility
for the developers of the system to do this type of testing themselves. This can save the developers
a lot of work and resources, since arranging meetings with future users can be both expensive
and difficult. By using a checklist of common usability problems and analysing the system in
great detail, the usability experts will be able to find a lot, if not most, usability problems. It
can be problematic for the developers to be a part of the usability test of their own system, since
they are easily biased towards their own system.

Even though they are following a checklist and should strictly test within the confines of this
checklist, it is easy for them to miss some glaring mistakes, in the same way that it is possible
to miss grammatical errors, when proof-reading one’s own text, despite knowing what mistakes
to look for. It is often cosmetic mistakes, such as the size of a click-able button, in the system
that are identified this way (Rubin, 2008, p.19).

User-based Evaluation requires the end-users of the system to test it during the development
to find the areas of the system that are lacking in usability. Finding people and a date where
they are available, and willing to help out with the development can be extremely difficult, since
not everyone is willing to spend their spare time. This can mean that it might be necessary to
pay prospective users to have them test the system.

An integral part of the evaluation is to ask the users to complete certain tasks, perhaps
giving them some data they need to enter into the system or ask them to trigger or use a certain
functionality in the system. The user is then asked to think aloud so the observers can get an
understanding of exactly what the user is thinking and how they are trying to accomplish the
given task. Frustrations that the user might have when using the system should be identifiable
in this manner. It is important to repeat the same tasks with each different test-person, not only
to confirm that several users identify the same problem, but also to determine the severity of the
problem.

Usability problems are not the only kind of problems that can be identified with this method
of evaluation, despite it being the main focus. If the tasks for the user are well thought out, the
evaluation can also be used to see if core functionality is present and in working order in the
system.

It is the test monitor’s job to make users feel as comfortable as possible while they are trying
out the system. Failure to do so, could lead to users being frustrated about parameters that are
outside the scope of the system.

Since the system is tested on the potential user-base, there is a greater chance for the issues
to be found to be more severe usability problems, that are hard to identify by looking for the
most commonly occurring ones, as a Heuristic Inspection does (Benyon, 2010, p.232-235).

Location of usability evaluations is something to consider when performing user-based
evaluations. The usability tests can either happen in a laboratory or as field studies (Kjeldskov,
2016). The strengths of evaluating in a laboratory is that the laboratory grants a very high
level of control of the situation, to the ones performing the test. In the laboratory the observers
are hidden behind a one-way mirror which means that a lot of people can be watching without
the test subject being overwhelmed. The laboratory also removes disturbances from the outside
world, which means that the test conditions can be closely replicated for each test subject. The
downside of using the lab is that it is difficult to give the test subject a sense of realism (Kjeldskov,

112

Chapter 10. Usability Evaluation 10.1. Usability

2016). It is possible to replicate parts of the use context in the lab to enhance the realism, but
it will never be exactly the same as using the system in real life.

If a greater sense of realism is needed, the usability test can be performed as a field study,
meaning that the test takes place in the actual location of where the system will be used af-
ter development. This type of usability testing gives less control of the situation to the people
performing the test, but ensures a high level of realism for the test persons. This includes dis-
tractions from the surrounding environment, which may make the test more difficult to analyse,
but also to test that the system works in a workplace where distractions inevitably will happen.

10.1.2 Analysing Usability Testing

Analysing the usability testing is essential to understanding which kinds of usability problems
exist, why the users find them problematic and what their thoughts were when they encountered
them. Two methods of analysing the gathered information can be used to identify problems:

Video Data Analysis (VDA) requires a camera and microphone setup to capture picture and
sound from the usability test, which can then be analysed after the conclusion of the test. The
user’s facial expressions, behaviour, and comments can be used to learn which parts of the system
the user finds problematic and why. To document the VDA, log files of identified problems, both
major and minor are created.

Instant Data Analysis (IDA), is another type of analysis which has the advantage that it
requires significantly less time in analysing the usability testing than other more traditional
approaches since it can be done on the run (Kjeldskov et al., 2004). Compared to VDA, it only
requires one more person who can hear what the tester is saying, can see how they react and can
watch what the tester is doing while interacting with the software. While observing they can
document everything while the testing is in progress and everything is fresh in their mind. After
the tests, the analysers can discuss what happened and since the severity of usability problems
can be defined by how frequently it is being discovered, the more severe usability problems are
far more likely to come up. This method finds most of the severe problems that VDA also finds,
but not as many minor cosmetic issues, which are not that important, to begin with (Kjeldskov
et al., 2004). To efficiently use IDA, one must have quite a lot of experience with the concept of
usability testing. It is recommended that people have spent several hours doing VDA on separate
projects before attempting IDA, since it is based largely on quickly being able to stop problems
that are similar to ones that have been seen in other projects (Kjeldskov et al., 2004).

10.1.3 Usability Testing during the Project

Since the project had a relatively short timescale, we only conducted three user-based tests. This
means that a lot of the usability testing was done with heuristic inspection. Of course, as one
of the requirements was that the system should be easy to use, we also had to conduct usability
tests with the users. After each iteration we performed a field study usability test with members
of the climbing club, while standing in the bouldering hall next to the walls. We considered
doing a laboratory test, but decided that doing a field study would allow us to test the system
while other climbers were in the hall, as well as granting us the ability to use the actual routes
on the walls in our tasks.

For our first usability test, two people were performing the test, the roles of these two people
were:

113

Chapter 10. Usability Evaluation 10.2. First Usability Test

A test monitor who stood next to the test subject during the test and made sure that the
test subject understood the task, as well as made sure that the test subject were thinking
aloud.

A data logger who stood out of the way of the test subject, and took notes during the test
about the tasks as the test subjects were solving them.

From our first experience with usability testing we learnt that it would be preferable to have
a video of the usability test. So we added another role to the test:

A video operator whose task was to ensure that a camera was recording at all time during
the usability test, so that parts of the usability test could be watched again at a later time.

For each test subject we had two recordings, one recording of the subject recorded with a
video camera, and one screen recording of the device they were using. The device was set up in
a way such that each tap on the screen was easily visible, giving us the ability to easily see what
the user was doing on the device.

After the tests we then synced up the two recordings into a single video, where the device
was visible next to the real life recording of the test subject. A single frame from a recording
can be seen in figure 10.1.

Figure 10.1: A single frame from the video recording of a usability test

For our final usability test, we used VDA to make sure we found as many usability problems as
possible. Since IDA relies too heavily on the previous usability experience of those conducting it,
and none of the group’s members have had any experience with usability testing, it was decided
that we would not use it.

10.2 First Usability Test

To test the system that was created during the first iteration we conducted a user-based evalua-
tion. At that point the system could show the complete list of routes, filter the routes by section,
grade and change the sort order. It was also possible to add new routes to the system as well as
edit existing ones. The views that the user could interact with are seen in figure 10.2.

Because of the limited scope of the system at this point, there was only four tasks:

114

Chapter 10. Usability Evaluation 10.2. First Usability Test

Tasks

a) In the system you see a list of routes - find route blue 38 in section c.

b) Find a route that is created by Hans.

c) Find a route on the wall and add it to the system.

d) You find that the route you have just created should have had the black grade. Change
this in the system.

(a) Route List View (b) Add Route View

Figure 10.2: View in the app after the first iteration.

Test person Gender Age Climbing experience
1* Male 23 3 years
2 Female 24 4 years
3 Female 19 7 years
4 Male 47 3 years
5 Male 14 1 month

Table 10.1: Overview of the people tested during the usability test. *Client Mattias Hornum

We tested our system on four people and our client, Mattias Hornum, with the demographics
shown in table 10.1. For every person we wrote down what difficulties they had with each task,
so that we later could identify the different usability problems in our system. The notes for every
person can be seen in appendix D. For our test we tried to pick different types of people from the
climbing club. We chose people of different genders, in the age range of 14-47 and with climbing
experiencing ranging from 1 month to 7 years.

115

Chapter 10. Usability Evaluation 10.2. First Usability Test

In total we identified seven usability problems, most of which were cosmetic but others were
critical. The complete list can be seen in table 10.2. The problem encountered by the most people
was P7. P7 was the problem ”Difficult or cannot find a route by author”, which was encountered
during task b). The people could not figure out how organise the routes in a way such that
the system facilitates the search of routes by a particular member (author). The problem was
classified as a catastrophic problem, since some of the users actually gave up on the task. P3 also
addresses this issue since the users experiencing this problem actually clicked the ”Add routes”
and entered the author field on the Add New Route page. The people tested thought this was a
way they could search for an author, so they typed in Hans into the Author field. So while they
thought that they were searching for a route by a given author, they were actually adding a new
route by that author. This problem was classified as serious, since the users perception of the
system state was wrong, but they figured it out fairly quickly, once they saw the Add button,
then went back to the previous page without adding the route to the system.

Usability problem Category
Experienced by
1 2 3 4 5

1. Do not realise that it is possible to sort routes. Cosmetic x x
2. The user does not know that they have forgotten to
specify all information during route creation.

Cosmetic x

3. Thinks that searching for a specific route can be done
by accessing whats actually the new route page by pushing
the ’+’ button.

Serious x x x

4. Do not realise that it is possible to filter routes. Cosmetic x x
5. Cannot find a route that they just created Critical x
6. Thought that changes in the edit route page was saved
automatically

Serious x

7. Difficult or cannot find a route by author Catastrophic x x x x

Table 10.2: List of usability problems.

Table 10.3 shows the number of usability problems in each category, discovered in the usability
test.

Cosmetic Serious Critical Catastrophe Sum

Number of usability problems 3 2 1 1 7

Table 10.3: Number of usability problems by category

To solve P1 and P4, we moved the panel with sort and filter (and later search) options to the
top of the screen. So even when users scrolled down the list, the options are always located in
the top of the screen.

For P2, we introduced alerts to the user when attempting to save a change that did not
provide the sufficient information.

P3 and P7 is addressed by adding search functionality in the second iteration, which also
introduces a more intuitive icon for search than the plus icon which may have been mistaken for
search by some, the magnifying glass.

For P5 it was more natural to, instead of leaving the user back at the route list page, send
them to the route info page for the newly created route.

116

Chapter 10. Usability Evaluation 10.3. Second Usability Test

10.3 Second Usability Test

After the second iteration, we conducted a second user evaluation. The users of the system was
now able to also upload video beta, add comments, upload an image to the route and highlight
holds that are part of the route, which this image is attached to. The users are also able to rate
each route, and the system now has restrictions on what a climber is allowed to, and what setters
are allowed to do, which we specified in section 5.1.2.

To test these new features, we created a list of tasks which each person during our testing
had to go through.

Tasks

a) In the system you see a list of routes - find the oldest route with a blue grade.

b) Find a route that is created by Hans.

c) Use the search bar to find a route of white grade and a route number of 6, in section B.

d) Find a route on the wall and add it to the system. You should include an image of the
route, and mark the holds that are part of the route.

e) You want to add tape to the route you just added. Find the route you just added, and add
a tape colour.

f) Find the route with a black grade and route number 10 located in section A, and add a
video beta to that route.

g) Imagine you just climbed one of the routes located in the system. Give the route a rating
and add a comment to the route, based on on your rating of the route e.g ”Great route”.

Test person Gender Age Climbing experience
1 Male 22 2 years
2* Male ? ? years
3 Male ? ? years
4 Male 27 7 years
5 Male 29 6 years

Table 10.4: Overview of the people tested during the usability test. * indicates the member who
did not partake in all tasks.

We tested the system on four male climbers, all in their twenties, but with experience in
climbing ranging between 2-7 years. The last test person (marked by an asterisk in table 10.4)
was someone who had almost finished building a new route. We decided to have him add the
new route to the system, to get as close to the real context as possible. He did not solve all tasks
in our usability tests but he did help us find some usability problems, so we chosen to include
those findings.

For each person, we noted what they did during the testing and noted what trouble they
had. We also recorded each usability test, so we could re-watch the footage, to identify as many
usability problems as possible.

117

Chapter 10. Usability Evaluation 10.3. Second Usability Test

We identified 12 usability problems, most of them cosmetic. The complete list of usabil-
ity problems can be seen in table 10.5, which also lists each person and what problems they
encountered. The complete details of this evaluation, can be seen in appendix E.

The more serious problems we discovered, was an issue with the search functionality we
implemented, which took far too long for anyone to find it useful, especially because there was
no feedback if the application was actually searching for what each person put into the search-
bar, or not. It was so serious, that we decided to tell the user, that the string they searched for
was correct, but our algorithm was too slow to wait for the result.

Usability problem Category
Experienced by
1 2* 3 4 5

1. Does not know the difference between the colour of
holds and grades.

Cosmetic x

2. Does not realise he can search/filter/sort Cosmetic x x
3. Tries to add image instead of comment, to add a video
beta

Cosmetic x

4. Does not know how to navigate to the add new route
page

Serious x

5. Toggling tape is not explicit enough Cosmetic x
6. Zooming on pictures with the zoom gesture Cosmetic x
7. Searches with terms not in English Cosmetic x
8. Thinks the circles on the picture highlights the starting
hold, not all the holds in the route

Cosmetic x

9. When pressing the enter button after a search, the
keyboard does not get hidden

Serious x x x x

10. Afraid to add details to a route during the creation of
it, because the route is not fully built yet

Cosmetic x

11. Thinks a rating has to be submitted Cosmetic x
12. Search functionality is far too slow Serious x x x x

Table 10.5: List of usability problems.

Table 10.6 shows the number of usability problems in each category, discovered in the usability
test.

Cosmetic Serious Critical Catastrophe Sum

Number of usability problems 9 3 0 0 12

Table 10.6: Number of usability problems by category. *Only performed one task as he was
building a route.

To access the add route page in this iteration, you would have to log in and then select the
Add route item from the main menu or alternatively click the plus icon in the lower right corner
and then enter your log-in information. The menu does not contain the Add route menu item if
the user is not logged in but this was added after the second iteration to try and fix problem P4.

P9 is simply resolved by making the smartphone keyboard hide away when hitting enter when
performing a search.

118

Chapter 10. Usability Evaluation 10.4. Third Usability Test

P12 is addressed by improving the search algorithm and also displaying a loading animation
at the top of the screen whilst the system is performing the search.

The rest of the issues are not addressed but possible solutions would have been attempted if
more time had been devoted to the issues. Instead we continued on to the third iteration.

10.4 Third Usability Test

During the third usability test, we prepared a list of scenarios and tasks. Each scenario had a
number of tasks, and can be seen in appendix F. These scenarios and accompanying tasks was
created using the following guidelines for a good task presented by Kjeldskov (2016):

• Represent real use of the system

• Describe the end result

• Motivate (Why should they be solved?)

• Include relevant data

• Group small subtasks together

An excerpt of task 5 of the usability test can be seen below. In the task we describe real
scenarios, which then translates to a task in the system. For example, we learnt in our PACT
analysis that the club is in the process of moving the climbing club to another location. We
include the needed account information in the task, so that the test subject has all of the
relevant information to perform the task. Lastly this excerpt shows how we have grouped tasks
together, as task a) and b) are both solved in the administrator panel.

Task 5

The climbing club has moved to a different location, and now has enough room for another
section. You have been given the task to add the section to the system.
To solve this task, you need an administrator account. Log in with the following information:
Username: admin
Password: 1234

a) Add the new section to the system

A member with the username TannerH has joined the board of directors, and wants to help
administrating the system. To do that, his account must have its privileges elevated to admin-
istrator rights.

b) Give the user TannerH administrator rights

Figure 10.3: Excerpt of a task from usability test 3

We tested our system at the end of the third and final iteration to test the latest added features
as well as some of the adjustments of existing features to see if previous usability problems has
been solved, namely the issues we discovered with the search functionality we discovered during
our previous usability test. All the tasks for the third usability evaluation are listed below.

119

Chapter 10. Usability Evaluation 10.4. Third Usability Test

Tasks

1. Find the oldest route with a green grade in section A.

2. Find out who made that route.

3. Use the search function to find the blue route in section A, created by Hans.

4. Find a route on the wall and add it to the system. Add only the necessary information.

5. Add a note to the route stating that you start the route from a sitting position.

6. Add a image of the route, and mark the starting hold.

7. Add yellow tape to the route you just created.

8. Add beta to the route you created along with a comment.

9. Find the top rated route in the system.

10. Rate the route yourself.

11. Log in as an administrator with the username ”admin”, and password ”1234”, and create
a new section.

12. Give the user TannerH administrator rights.

13. Add a new hold colour to the system.

Test person Gender Age Climbing experience Smartphone owner How easy 1-6
1 Female 46 1 year Yes (Many years) 5
2 Male 27 3.5 years Yes (7 years) 6
3 Male 30 1 year Yes (5 years) 6
4 Male 24 1.5 years Yes (6 years) 5
5 Male 34 3.5 years Yes (8 years) 5

Table 10.7: Overview of the people tested during the usability test.

The final test was conducted on five members of the club, one of them an experienced setter
who had just created four routes before going through our usability testing. An overview of the
people we tested, can be seen in table 10.7. We tried getting people of different ages, gender and
cultures. We ended up testing four danish males, one foreign male, and a danish female. The
test people were within the age groups late 20’s and mid 40’s, with climbing from a year and up.
Everyone happened to own a smartphone, and they were all quite experienced in handling such
a device. Every test was recorded so we could conduct VDA in order to identify the usability
problems each person ran into.
During our analysis, we identified a total of 12 usability problems, all which can be seen in table
10.8, most of them cosmetic. One of the more serious problems we encountered, was usability
problem 6. The problem, however, did get solved in other ways by the people who encountered
this problem, for example by adding a note, an action they already do in their current system,
and when others are checking the route information page, everyone can read the note, stating it
has tape and what colour the tape has.

120

Chapter 10. Usability Evaluation 10.4. Third Usability Test

Another problem we encountered, was more a bug if anything, which we listed as usability
problem 11. The person added a section with a very long name which caused the name of the
section to go outside the section-name box. But he also edited the section right away when he
discovered that bug.
The previous issues we had with the search-bar, where it took far too long for any routes to
appear after a search, has been resolved based on this usability test. The only issue that remains
here, was the fact people thought they had to write in Danish words to do a search for what they
want, but this is a cosmetic issue since they realised this right away and replaced the Danish
words with English. We also will not fix this issue, since this requires adding support for Danish,
and we specified that functionality as a requirement we will not have, as can be seen in our
MoSCoW analysis in section 3.3.

Usability problem Category
Experienced by
1 2 3 4 5

1. The user tries the zoom gesture instead of pressing the
image once

Cosmetic x

2. The user tries editing information after having pressed
the save button

Cosmetic x x

3. The user has problems finding where to add beta Serious x
4. The user is unsure, if the ratings update immediately Cosmetic x x
5. The user forgot to change the name from default, when
creating a hold

Cosmetic x x x

6. The user is unsure how to add tape Serious x x
7. The user tries swiping away the sidebar panel Cosmetic x
8. The user goes to a route page/search bar, and when
they goes back, filters are reset

Cosmetic x

9. User adds comment instead of note Cosmetic x
10. User is unsure if admin rights changes after he clicks
admin-button

Cosmetic x x

11. User adds a section with a name, that is too long for
the box it is in

Cosmetic x

12. Has difficulty believing the search functionality only
accepts English terms

Cosmetic x x

Table 10.8: List of usability problems.

Table 10.9 shows the number of usability problems in each category, discovered in the usability
test.

Cosmetic Serious Critical Catastrophe Sum

Number of usability problems 10 2 0 0 12

Table 10.9: Number of usability problems by category

At the end of the test, each participant had to fill out a questionnaire of the form seen in
appendix F. Two out of the five people tested, gave our system a six-star rating, showing that
they strongly agree that the system was indeed easy to use. The remaining three did not wholly
disagree with the other two people, and gave it a five-star rating. Overall this shows that the

121

Chapter 10. Usability Evaluation 10.4. Third Usability Test

people tested, finds it an easy experience to use the system we have created, which was one of
the key requirements listed in the MoSCoW analysis.
The two people who gave the system a 6/6 rating, were participant two and three. As can
be seen in table 10.8, both participants experienced less serious issues with the system, than
the rest. Participant two only experience one issue, which was P6, while participant three only
experienced cosmetic issues, which they quickly worked around themselves. Two people who
experienced more issues than the rest, were participant one and five, both whom gave the system
a five-star rating. Participant one had trouble understanding that the search functionality only
accepted English terms, and also, had trouble finding out how and where they could add beta.
Participant five was annoyed with how the filters they applied got reset each time a search was
conducted, and also, discovered a bug in the system (P11).
Overall, the ratings given by the participants, does comply with the amount of usability issues
they ran into. The people who discovered the least and only minor issues, gave it a higher rating
than those who discovered more issues, that were also more severe.

Summary

This chapter described four properties that a usable system should have: efficiency, safety of
use, utility, and ease of use. Then, the two methods for conducting usability tests, heuristic
inspections and user-based evaluation, were described. Two methods for analysing the results
of a user-based evaluations were also covered. These two, instant data analysis and video data
analysis, were described and it was explained why only video data analysis was used to analyse
the usability tests of the system.

The usability tests done on the system introduced some sources of errors, which was cause
for concern, as discussed in the next chapter along with the discussion of the requirements.

122

Chapter 11

Discussion

In this chapter, general concerns about the project are discussed. It is described how the users
on whom the usability evaluations were conducted, were representative of AKK’s members.
Furthermore, the way in which the system solved the requirements specified in section 3.3 is
described.

11.1 General concerns

In this section, general concerns about the cooperation with users is described. In order to get a
better idea of what problems should have been a priority and also to simply find more, possibly
undiscovered, usability problems we would have wanted more than five people for each usability
test. Nine to twelve people would be a good target to try and reach in future projects as roughly
90 percent of problems should be discoverable with nine or more participating users (Kjeldskov
et al., 2004). To get this done, it would be ideal to find a set of people beforehand instead of
relying on them to be available when the test was being executed. This would, of course, require
more preparation.

The number of iterations and their focus was chosen to fit the MoSCoW prioritisation, mean-
ing that in every iteration we added more features to the system according to their MoSCoW
priority. With more new features, we should expect to see new problems in the usability tests.
Old problems should disappear or have a reduced impact if addressed well, and this is what we
experienced. In the first iteration, a usability test was performed, as seen in section 10.2. Here
we found that five of seven problems had to do with finding routes in the system. In the third
and final iteration, we only observed one or two cosmetic issues with the route list page overall,
and found that most previously discovered usability problems, had been resolved.

In the first usability test, we observed two critical or catastrophic problems. In the second
iteration this was reduced to zero and only cosmetic and serious problems remained. In the third
and final iteration, we saw that there were still usability problems but the main part of these
problem were cosmetic as well and two serious usability problems.

As we go through more iterations, we should expect problems to be fewer and less serious in
nature, but as we expanded the system, new problems appeared and as such we could not expect
the number of total problems to always be decreasing. It should also be taken into account that
the number of tasks the users have to go through, increases with the expansion of the system.

123

Chapter 11. Discussion 11.2. Fulfilment of Requirements

Membership statistics Usability test people statistics

Membership type Male Female Percentage Male Female Percentage

Age 0-12 11 22 ≈ 12 0 0 0
Age 13-18 10 13 ≈ 9 1 0 ≈ 7
Age 19-24 63 26 ≈ 33 3 2 ≈ 33
Age 25-59 85 39 ≈ 46 6 1 ≈ 47
Age 60+ 0 0 0 0 0 0
unknown 0 0 0 2 0 ≈ 13
Total 169 100 100 12 3 100

Table 11.1: Membership Statistics for AKK compared to test persons. Source: AKK

The table 11.1 shows the age distribution of the members in the climbing club alongside the
distribution of the people who participated in our usability tests. The most underrepresented
group are the females, the percentage of females in AKK are approximately 37 percent and the
percentage of females who participated in our test were only 20 percent.

11.2 Fulfilment of Requirements

In section 11.2.1, we look at the must-have requirements concerning the administration of routes,
finding a route in the system, handling multiple users simultaneously, and the ease of use. The
should-have requirements is discussed in section 11.2.2 and concerns adding an image to a route,
modifying sections and the mobility of the system. In section 11.2.3, the could-have requirements
concerning rating a route, adding comments to a route and adding a beta to a route, is described.
The requirements that we prioritised as will-not-have, are not discussed in this chapter, instead
they are discussed in chapter 13 concerning future development of the system.

11.2.1 Must-have Requirements

The first and most comprehensive must-have requirement was that the system should have the
same functionality as the current system. This included the ability to add, delete, edit, and
view routes, and also the ability to find routes based on their grade, as it is possible on the
whiteboards where the routes are grouped by grade. To see that this requirement is fulfilled, we
now show how these operations are available and how they work in the system.

124

Chapter 11. Discussion 11.2. Fulfilment of Requirements

(a) Route list screen,
showing the ability to fil-
ter and sort all routes.

(b) Route info screen,
showing the ability to edit
and delete a route.

Figure 11.1: Shows how we have implemented the whiteboard system’s basic functions.

The ability to scroll through and sort the list of all routes, can be seen in figure 11.1a. In
figure 11.1b, we can see that the task of deleting or editing a route is possible by clicking the edit
or delete button. Adding a route is possible by clicking the plus icon in the lower right corner
of the screen, seen in figure 11.1a. More details about adding, deleting or editing a route in the
system are described earlier in section 7.2.

It is possible to filter routes by their grade, which corresponds to the action of looking at a
single whiteboard in the climbing club. The second must-have requirement was that the system
must be able to show routes based on section and the date it was created on. This requirement
was solved by adding the option to filter routes by section as well as two sort options to list
routes with the newest or oldest date of creation. In the system, authenticated users are able to
edit the section, grade, number, colour of hold, image and note of a route, however, functionality
for editing the creating date was never implemented. This means if someone edits a route
significantly, it can be argued that the changed route effectively is a whole new route, and
therefore, should have an updated date of creation.

The functionality behind adding, editing, deleting and finding routes has been tested inter-
nally by unit testing as described in chapter 9. Besides internal testing, the functionality was
also tested through the tasks conducted in the usability tests. From the usability tests, we have
shown that the test persons were able to add and edit routes. As well as finding routes by section,
grade and date of creation. Through the usability evaluations, we have not tested whether the
users can delete a route. This has been tested internally by the group members and through unit
tests.

Through our choice of developing a web-based application using ASP.NET Core, we fulfil the
next must-have requirement, which states that the system must be able to handle multiple users
simultaneously. When users perform actions in client-side, it sends requests to the server-side
API. ASP.NET Core assigns a thread from its thread pool to handle the request. The thread
then executes the code in the controller, and returns the response to the client (Cleary, 2014).

The last must-have requirement is that the system must be easy to use. This is not a technical

125

Chapter 11. Discussion 11.2. Fulfilment of Requirements

requirement and cannot be tested without involving the future users of the system. After each
iteration of the system, we conducted usability tests to find problems that made the system
difficult or frustrating to use. The use of multiple usability tests allowed us to fix problems from
the earlier test, and also make sure that the changes we made did not introduce new problems.

In section 10.1, we mentioned four characteristics of a usable system: efficiency, safety of use,
utility, and ease of use. The safety of use was also tested in our usability tests, as they were all
done as field studies in the climbing club. We found no problems in regards to using the system
while being in the climbing club.

In our final usability test, we discovered ten cosmetic, two serious and no critical usability
problems. The first serious usability problem, as shown in 10.8, was that one participant had
problems finding where to add beta. The second serious usability problem was that two of the
participants had problems adding tape to a route in the system.

In the final usability test the five participants were between 24 and 46 years of age which
means they fall into the two largest age groups. These people rated the system 5.4/6 on average
on the scale of being easy to use (6 being the easiest). This group was the most important as
we expect younger people to be more comfortable with technology in general and thus likely
experience less problems during use (Lauterbach, 2015).

The score of 5.4 out of 6 and the low number of serious and critical usability problems give
an indication that the system is easy to use which is one of our must-have requirements. In order
to increase the certainty of the system’s usability, we could test the system on a larger amount
of people and continue to reduce the number of usability problems.

11.2.2 Should-have Requirements

The goal of the should-have requirements was to solve some of the challenges of the whiteboard
system. The first requirement was that the system should allow members to add images of the
routes to the system. This requirement was met by allowing the users of the system to take a
photo with their phone, and add it to a route. We also added functionality for marking the holds
on the image, to make it easier for other members to see exactly where the route was in a picture
containing several routes. In our second usability test, we found that the users had difficulties
realising that they were able to add these holds. In the third usability test, we found that after
adding a guide as seen in figure 11.2, the users no longer had any issues using the feature to
mark holds.

126

Chapter 11. Discussion 11.2. Fulfilment of Requirements

Figure 11.2: Edit route screens before and after the added guide on how to mark holds.

The next should-have requirement was that the system should offer the ability to modify
sections. We implemented this by adding administrators to the system, allowing them access to
an administrator panel where they could modify the structure of the climbing club. In this panel,
they are able to modify the sections, grades, holds, and members. Although the requirement was
only to manage sections, managing other administrators was also a necessity to allow more than
one person to manage the sections. After adding the user management and section management,
the structure was already in place to add grade and hold management as well, which when added,
makes the system more versatile.

The last should-have requirement was that the system should be mobile such that it could
be used whenever the user has Internet access. Similarly to the must-have requirement for
handling multiple users simultaneously, this requirement was largely fulfilled by our choice of
technical platform. As we chose to make a web-based application, the application is essentially
just a website that the user visits, and as such does not require anything other than an Internet
connection.

11.2.3 Could-have Requirements

The goal of the third iteration and the could-have requirements was to add a social aspect
to the system. The first requirement was to allow members to add beta to routes. Another
requirement was to allow members to comment on routes. Both of these requirements were
fulfilled simultaneous, by implementing a comment feed, which allowed comment to contain a
video beta. In the third usability test, we learnt that while it was not always clear to the users
that the video attachment was considered beta, by the system, adding a video when being asked
to do so, was little or no problem for the users.

The last could-have requirement was the ability for members to rate routes and view the
ratings. We implemented a star system where each member can rate a route from one to five
stars. In the route list a user can then sort by the average rating of routes or simply see them
on each route’s information card. From the third usability test, we learnt that the feature was
very simple to use, although the user needed feedback when a rating was saved. This has been

127

Chapter 11. Discussion 11.3. Choice of Software Development Method

added since the usability test.

11.3 Choice of Software Development Method

As described in section 2.1.4, we worked iteratively in this project. Two of the reasons for this
choice were the possibility for more interaction with the future users of the system during the
development process, and the limited time frame of the project.

The choice of develop method definitely allowed us to work closely with the climbing club,
as shown by the number of tests and interviews we performed in the club. Working closely with
the club helped us make sure that the things we were working on corresponded to problems in
the club, so that we did not do unnecessary work.

We wanted to use an iterative method such that we would have a working, albeit simple
system, early in the project. This was not as easy as we thought it would be. In the beginning
of a project, there are a lot of unknown factors that need to be cleared before a system can
be developed. Because of our lack of experience with the iterative method, we had problems
determining the parts of the problem domain that needed to be analysed in first iteration. This
caused us to analyse a large part of the problem domain in the first iteration, causing our first
iteration to be much larger than the other two. Even if we had previous experience with the
method, the first iteration would probably still be the largest iteration, but we would have less
trouble determining what parts to analyse.

Because of the amount of analysis we performed in the first iteration, we found that in the
later iterations, a large part of the analysis needed had already been covered in the first iteration.
This caused the focus of the later iterations to move from analysing to implementing and testing.

Summary

In this chapter some general concerns about sources of errors in the project were discussed. How
the system solved the requirements it should, was shown and explained in detail. Based on this
knowledge, it was possible to make a final conclusion on the system and project as a whole, as
done in the next chapter.

128

Chapter 12

Conclusion

In this project, a system for administrating routes at Aalborg climbing club was developed. The
project tried to answer the problem statement: how can we develop a mobile system that allows
multiple members to easily administrate climbing routes including associated grades, sections,
images, betas, ratings and comments?

To solve this problem, the classes found in the problem domain were modelled in the system.
The classes found were: Section, Route, Grade, Member, Comment, Beta, Rating, and Hold. In
the application domain, three types of actors were identified: the climber, the setter, and the
administrator. The goal of the climber is to get a simple overview of routes in the club and give
beta to other members in the club by comments, videos, or ratings of routes. The goal of the
setter is to set and manage routes in the club, and the goal of the administrator is to handle
adding new sections to the system and administrating grades. In order to create a digitised
version of the old system, functionality for finding, adding, editing, and deleting Routes was
added. Each Route in the system can be uniquely identified by their Grade and Route number.
To find routes in the system, Members can filter routes based on their Grade and Section, as
well as use one of the five different sort options: newest, oldest, grading, rate, and author. As a
more advanced search option, a search bar was implemented using the Wagner-Fischer algorithm
for calculating the edit-distance from search terms to route attributes. When authenticated in
the system, a Member can add, edit, and delete Routes. The authentication ensures that only
registered users of the system can remove, add, and edit information in the system, while still
allowing unauthenticated Members to find routes. Furthermore, an administration panel page
was created in the user-interface to allow administrators of the system to add, edit, and delete
Grades and Sections. To support the creation of new administrators, Members that already have
administrator privileges can appoint other Members as administrators through the administration
panel. To support Holds in the system an Image class was created, which allows Members of the
system to add an Image of a route, and thereafter marking the Holds by tapping on the image.
Furthermore, Comments and video Betas were supported in the system by allowing a Member to
attach a video Beta to a Comment on a Route.

To develop the Route administration system for Aalborg climbing club, a client-server archi-
tecture with five components was used: model, controller, client, view model and view. A big
part of the system was developed using C# and .Net Core along with the Entity Framework Code
First, which allowed us to store data in the system by mapping classes in the system to tables
in a SQLite database. The user-interface was implemented using HTML, CSS and JavaScript
along with the frameworks Handlebars and JQuery. The choice of architecture, languages and
frameworks, allowed us to create a system able to handle multiple users simultaneously. The

129

Chapter 12. Conclusion

choice of making a web based application for smartphones, allowed us to create a system that
was mobile and could be used anywhere in AKK where an Internet connection was available.
To test the functionality of the system, different unit tests were conducted for the ViewModel,
Client, and Controller components using the testing frameworks QUnit and NUnit.

To evaluate the system with the future users, three usability tests were conducted, one for
each software development iteration. A total of fifteen different members, between the ages of
14 to 47, attended the usability tests. With the use of notes and video taken during the tests,
different usability problems were found during each test. The usability problems were categorised
as being either catastrophic, critical, serious, or cosmetic. After the third iteration, we found ten
cosmetic and two serious usability problems. The first serious usability problem was experienced
by two test persons that were unsure how to add tape to a route in the system. The second
serious usability was that one test person had problems finding where to add beta to a route in
the system. The five users that took part of the third usability test were given a questionnaire
after performing the tasks, where they were asked to rate the ease of using the system on a scale
from one to six (six being the easiest). Three out of five users answered five while the remaining
two users gave it a score of six. This indicates that the system fulfils the requirement that the
system must be easy to use. However, to further conclude on this requirement, the system must
be tested on more members of AKK, as well as a more diverse group of people, over a longer
time. This ensures a more representative result, as well as allowing the users to become familiar
with the system which may create previously unseen usability problems.

The few usability problems found in the last usability test should be fixed in later develop-
ment, although as most of the problems were cosmetic and no critical usability problem were
discovered, then they did not hinder the users much.

As an answer to the problem statement, we can, based on the discussion in chapter 11, see
that the system fulfils all must-have, could-have, and should-have requirements stated in section
3.3, and thereby the system is an answer to the problem statement.

130

Chapter 13

Future Development

While the finished product fulfils all of the requirements it should, there are still several ways
in which it could be improved given more resources, especially time. In this chapter, we will
discuss two distinct ways of improving the system: how it could be used in other climbing clubs
and how it could be improved for use in AKK alone.

13.1 Using the System Outside of AKK

The result of this project is a web application for administrating routes in AKK. As the system
has been developed with the single climbing club in mind, some parts of it may not work in
another climbing club. A good example of this, is the grading of routes. AKK, and by extension
our system, uses five different colours for representing the different grades. These five grades do
not follow any official system, but AKK has been moving towards a more standardised grading
system: the French Numerical Grades became available in the rope-climbing hall towards the
end of the project (Larsen, 2016). This could potentially be a problem, if our system was to be
used in another climbing club, but it is worth noting that the system supports custom grades as
well, which certainly opens up for a lot of possibilities. The user interface layer of our system
forces the users to make some choices, when it comes to creating new grades: a grade consists of
a name and a colour along with information of how it compares to the other grades. If a different
climbing club needs to represent their grades as a number, they would find that the current user
interface does not allow grades to be identified by anything but their colour. The same kind
of problem can be found with sections, whose names should not be longer than four characters,
since the text would otherwise overflow the boxes it is supposed to stay inside of.

Since the system is created in a strict-closed manner, meaning that any architectural layer
can only use operations from the layer directly below it, it is entirely possible to change the top-
most layer without breaking any of the lower layers. Both of the previously mentioned problems
exist within the top-most layer, and could therefore potentially be fixed by changing parts of the
user interface or even creating a new one. This is especially true, since the lower layers are less
specialised, and are able to represent grades and sections in ways that are less limiting.

Even then, it is entirely possible that there are some parts of other climbing clubs’ problem
domains that cannot be modelled sufficiently well in our system as it is now. The lower architec-
tural layers of the system have been created in a manner so that they have low coupling, which
means that adding to the model or functional layers is not a cumbersome task. This means,
that if we were to visit other climbing clubs, analyse their problem and application domains, and

131

Chapter 13. Future Development 13.2. Improving the System for AKK

identify the differences from AKK, it would, conceivably, be relatively easy to implement the
changes in a way that could make the system usable in other clubs.

13.2 Improving the System for AKK

The modular way, in which the system has been developed means that it is relatively easy to
implement new features and improve the system. This means that, given enough resources, it
would be entirely possible to take more suggestions from climbers in AKK and provide them with
an even more customised route administration system. Our usability tests have provided us with
several ideas for future development of the system. Because of our limited time with the project,
most of these suggestions ended up in the will-not-have part of the MoSCoW requirements. We
did receive several suggestions, but some of them were deemed to be too specifically tied to the
people who made them. The three ideas that did make it to the requirements are as follows:

• Localisation

• Social media integration

• QR-codes or NFC

• Indication whether a safety certificate is needed to climb a route

Localisation was one of the very first requirements we received from AKK, since Hornum
talked about it in our first interview. We had been expecting to make a system in Danish,
because of the location of the Climbing Club, but as it turned out, several members of the
club are foreigners and are not very skilled at the Danish language. Because of this, we made
it a requirement that the system should be available in both Danish and English, but when
Hornum reviewed the requirements he felt that having the system available in Danish was of little
importance. Instead the system could be made solely available in English, and the majority of
its users would have no problems using it. Given the fact that AKK would like their system to be
used by all their members including children, it would seem reasonable to implement localisation,
given more time.

Social media integration was a suggestion we received from more than one member in the
club. One thought it would be nice if every image taken of routes would automatically be
shared on AKK’s Instagram profile, while another would just like the ability to share routes and
video-beta on various social media websites. Given that the club has both a Facebook and an
Instagram account, the idea of integrating the system with social media could seem like a good
idea if development was to continue

Using additional technology to allow users to more easily identify a route in the system was
suggested by a climber. His idea was that a little QR-code sticker could be attached to the wall,
and that the system should be able to identify the routes from the stickers. In essence, this idea
is actually a continuation of one of the core ideas of the system, which is to make it easy for
people to find routes. We did not develop it in the first place, because we felt it was slightly
superfluous, as the system already allowed for people to identify the routes by filtering and
searching, which our usability tests proved they could. Besides, our system did not require AKK
to change anything about their routes, while this idea would. Given more time for development
it would be entirely possible to implement this, and with more resources, NFC seems a viable
candidate for electronically identifying routes.

Given more time it would be possible to implement support for warning climbers if a specific
route requires a safety certificate to climb. As mentioned in section 3.2 it is only sports climbing

132

Chapter 13. Future Development 13.2. Improving the System for AKK

routes in AKK that requires a certificate to climb, so by adding this functionality we would also
be able to distinguish between sports-climbing and bouldering routes in the system.

133

Bibliography

Aalborg klatreklub, 2016a. URL http://njklatreklub.dk. Accessed: 2016-09-16.

Aalborg klatreklub, 2016b. URL http://njklatreklub.dk/vil_du_klatre/kom-i-gang/. Ac-
cessed: 2016-12-14.

About Sports, 2016. URL http://climbing.about.com/od/topropeclimbing/a/TopRoping1.

htm. Accessed: 2016-09-16.

Afd. for Vækst og Reproduktion, Rigshospitalet. The 2014 danish references from birth to 20
years for height, weight and body mass index., 2014. URL http://www.xn--vkstkurver-d6a.

dk/index.html.

S. Allen. C# levenshtein distance, 2016. URL https://www.dotnetperls.com/levenshtein.

Apple. ios human interface guidelines, September 2016. URL https://developer.apple.com/

ios/human-interface-guidelines/overview/design-principles/. Accessed: 2016-12-06.

D. Benyon. Designing Interactive Systems : A comprehensive guide to HCI and interaction
design. Addison Wesley, Harlow, England New York, 2010. ISBN 978-0-321-43533-0.

D. Benyon. Designing interactive systems : a comprehensive guide to HCI, UX and interaction
design. Pearson, Harlow, England, 2014. ISBN 9781447920113.

T. Berger-Wolf. Cs 502: Algorithms in computational biology, 2016. URL http://compbio.cs.

uic.edu/~tanya/teaching/CompBio/scribe/TimLuciani_scribing-0119.v3.pdf.

E. M. Burke and B. M. Coyner. Top 12 reasons to write unit tests, 2 2003. URL http:

//www.onjava.com/pub/a/onjava/2003/04/02/javaxpckbk.html.

S. Cleary. Async programming : Introduction to async/await on asp.net, October 2014. URL
https://msdn.microsoft.com/en-us/magazine/dn802603.aspx.

F. J. Damerau. A technique for computer detection and correction of spelling errors, 3 1964.
URL http://dl.acm.org/citation.cfm?doid=363958.363994.

Danmarks statistik, 2015. URL http://www.dst.dk/Site/Dst/Udgivelser/GetPubFile.

aspx?id=20737&sid=itbef2015. Accessed: 2016-10-10.

Dansk Klatreforbund, 2016a. URL http://klatreforbund.dk/bouldering/. Accessed: 2016-
09-16.

Dansk Klatreforbund, 2016b. URL http://klatreforbund.dk/sportsklatring/. Accessed:
2016-09-16.

134

http://njklatreklub.dk
http://njklatreklub.dk/vil_du_klatre/kom-i-gang/
http://climbing.about.com/od/topropeclimbing/a/TopRoping1.htm
http://climbing.about.com/od/topropeclimbing/a/TopRoping1.htm
http://www.xn--vkstkurver-d6a.dk/index.html
http://www.xn--vkstkurver-d6a.dk/index.html
https://www.dotnetperls.com/levenshtein
https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/
https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/
http://compbio.cs.uic.edu/~tanya/teaching/CompBio/scribe/TimLuciani_scribing-0119.v3.pdf
http://compbio.cs.uic.edu/~tanya/teaching/CompBio/scribe/TimLuciani_scribing-0119.v3.pdf
http://www.onjava.com/pub/a/onjava/2003/04/02/javaxpckbk.html
http://www.onjava.com/pub/a/onjava/2003/04/02/javaxpckbk.html
https://msdn.microsoft.com/en-us/magazine/dn802603.aspx
http://dl.acm.org/citation.cfm?doid=363958.363994
http://www.dst.dk/Site/Dst/Udgivelser/GetPubFile.aspx?id=20737&sid=itbef2015
http://www.dst.dk/Site/Dst/Udgivelser/GetPubFile.aspx?id=20737&sid=itbef2015
http://klatreforbund.dk/bouldering/
http://klatreforbund.dk/sportsklatring/

Bibliography Bibliography

I. d’électronique et d’informatique Gaspard-Monge (IGM). Boyer-moore algorithm, 1 1997. URL
http://www-igm.univ-mlv.fr/~lecroq/string/node14.html.

EMU. Engelsk - fælles m̊al, læseplan og vejledning, 2016. URL http://www.

emu.dk/modul/engelsk-f\OT1\aelles-m\unhbox\voidb@x\bgroup\let\unhbox\

voidb@x\setbox\@tempboxa\hbox{a\global\mathchardef\accent@spacefactor\

spacefactor}\accent23a\egroup\spacefactor\accent@spacefactorl-l\OT1\

aeseplan-og-vejledning.

EntityFrameworkTutorial. What is entity framework, 2016. URL http://www.

entityframeworktutorial.net/what-is-entityframework.aspx.

M. Fester. Medlemstal 2015, 2016. URL http://www.dif.dk/da/om_dif/medlemstal.

R. T. Fielding. Architectural Styles and the Design of Network-based Software Ar-
chitectures. PhD thesis, University of California, Irvine, 2000. URL http:

//jpkc.fudan.edu.cn/picture/article/216/35/4b/22598d594e3d93239700ce79bce1/

7ed3ec2a-03c2-49cb-8bf8-5a90ea42f523.pdf. AAI9980887.

Google. Material design, August 2016. URL https://material.google.com/. Accessed: 2016-
12-06.

M. Hornum. Interview with mattias hornum, 2016.

IFSC. Key figures, 2016. URL https://www.ifsc-climbing.org/index.php/media-centre/

key-figures-2.

Y. Katz. Handlebars, 2016. URL http://handlebarsjs.com/.

J. Kjeldskov. Usability and usability evaluation, September 2016. DAT-3/SW-3/IDA-7. DEB.
Electronic appendix ”DEB usability guest lecture - pt 1.pdf”.

J. Kjeldskov, M. B. Skov, and J. Stage. Instant data analysis: Conducting usability evaluations
in a day. In in Proceedings of the Third Nordic Conference on Human-Computer Interaction,
pages 233–240. ACM Press, 2004.

Y. Kunio. Jma official statement, 2015. URL https://www.ifsc-climbing.org/images/

media-centre/press-releases/JMA_statement_Tokyo_2020.pdf.

M. F. Larsen. Ny & opdateret oversigts skema over ruterne i den store hal, De-
cember 2016. URL https://www.facebook.com/groups/aalborgklatreklub/permalink/

1236330866460009/. Accessed: 2016-12-13.

T. Lauterbach. It-anvendelse i befolkningen 2015, December 2015. ISSN 2245-4152. URL
http://www.dst.dk/Site/Dst/Udgivelser/GetPubFile.aspx?id=20737&sid=itbef2015.

H. Lichter, M. Schneider-Hufschmidt, and H. Zullighoven. Prototyping in Industrial Software
Projects-Bridging the Gap Between Theory and Practice, pages 825–832. IEEE, 1994. doi:
10.1109/32.368126.

L. Mathiassen, A. Munk-Madsen, P. Axel Nielsen, and J. Stage. Object-oriented analysis design.
Marko, Aalborg, Denmark, 2000. ISBN 9788777511509.

N. B. M.D. The psychology of laziness, October 2014. URL https://www.psychologytoday.

com/blog/hide-and-seek/201410/the-psychology-laziness.

135

http://www-igm.univ-mlv.fr/~lecroq/string/node14.html
http://www.emu.dk/modul/engelsk-f\OT1\ae lles-m\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {a\global \mathchardef \accent@spacefactor \spacefactor }\accent 23 a\egroup \spacefactor \accent@spacefactor l-l\OT1\ae seplan-og-vejledning
http://www.emu.dk/modul/engelsk-f\OT1\ae lles-m\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {a\global \mathchardef \accent@spacefactor \spacefactor }\accent 23 a\egroup \spacefactor \accent@spacefactor l-l\OT1\ae seplan-og-vejledning
http://www.emu.dk/modul/engelsk-f\OT1\ae lles-m\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {a\global \mathchardef \accent@spacefactor \spacefactor }\accent 23 a\egroup \spacefactor \accent@spacefactor l-l\OT1\ae seplan-og-vejledning
http://www.emu.dk/modul/engelsk-f\OT1\ae lles-m\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {a\global \mathchardef \accent@spacefactor \spacefactor }\accent 23 a\egroup \spacefactor \accent@spacefactor l-l\OT1\ae seplan-og-vejledning
http://www.emu.dk/modul/engelsk-f\OT1\ae lles-m\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {a\global \mathchardef \accent@spacefactor \spacefactor }\accent 23 a\egroup \spacefactor \accent@spacefactor l-l\OT1\ae seplan-og-vejledning
http://www.entityframeworktutorial.net/what-is-entityframework.aspx
http://www.entityframeworktutorial.net/what-is-entityframework.aspx
http://www.dif.dk/da/om_dif/medlemstal
http://jpkc.fudan.edu.cn/picture/article/216/35/4b/22598d594e3d93239700ce79bce1/7ed3ec2a-03c2-49cb-8bf8-5a90ea42f523.pdf
http://jpkc.fudan.edu.cn/picture/article/216/35/4b/22598d594e3d93239700ce79bce1/7ed3ec2a-03c2-49cb-8bf8-5a90ea42f523.pdf
http://jpkc.fudan.edu.cn/picture/article/216/35/4b/22598d594e3d93239700ce79bce1/7ed3ec2a-03c2-49cb-8bf8-5a90ea42f523.pdf
https://material.google.com/
https://www.ifsc-climbing.org/index.php/media-centre/key-figures-2
https://www.ifsc-climbing.org/index.php/media-centre/key-figures-2
http://handlebarsjs.com/
https://www.ifsc-climbing.org/images/media-centre/press-releases/JMA_statement_Tokyo_2020.pdf
https://www.ifsc-climbing.org/images/media-centre/press-releases/JMA_statement_Tokyo_2020.pdf
https://www.facebook.com/groups/aalborgklatreklub/permalink/1236330866460009/
https://www.facebook.com/groups/aalborgklatreklub/permalink/1236330866460009/
http://www.dst.dk/Site/Dst/Udgivelser/GetPubFile.aspx?id=20737&sid=itbef2015
https://www.psychologytoday.com/blog/hide-and-seek/201410/the-psychology-laziness
https://www.psychologytoday.com/blog/hide-and-seek/201410/the-psychology-laziness

Bibliography Bibliography

C. Melissa Mcclendon, L. Regot, and G. Akers. What is prototyping?, 2012. URL http:

//www.umsl.edu/~sauterv/analysis/prototyping/proto.html.

D. Methvin. The state of jquery 2014, 1 2014. URL https://blog.jquery.com/2014/01/13/

the-state-of-jquery-2014/.

Microsoft. Unit testing. URL https://msdn.microsoft.com/en-us/library/aa292197.aspx.

Microsoft. The mvvm pattern, 2012. URL https://msdn.microsoft.com/en-us/library/

hh848246.aspx.

Microsoft. Data layer guidelines, 2016a. URL https://msdn.microsoft.com/en-us/library/

ee658127.aspx.

Microsoft. What is asp.net core?, 2016b. URL https://docs.asp.net/en/latest/intro.

html#what-is-asp-net-core.

Microsoft. The repository pattern, 2016c. URL https://msdn.microsoft.com/en-us/

library/ff649690.aspx.

Minimum-Bouldering, 2016. URL http://ba.iff.im/. Accessed: 2016-10-04.

National Eye Institute. Facts about color blindness, February 2015. URL https://nei.nih.

gov/health/color_blindness/facts_about.

NUnit. Nunit 3 test runner for .net core, 2016. URL https://www.nunit.org.

D. of Computer Science Old Dominion University. Dynamic programming - example: Edit
distance, 7 2013. URL https://secweb.cs.odu.edu/~zeil/cs361/web/website/Lectures/

styles/pages/editdistance.html.

D. B. S. of Information and C. Sciences. Knuth-morris-pratt string matching, 2 1996. URL
http://www.ics.uci.edu/~eppstein/161/960227.html.

J. Rubin. Handbook of usability testing : how to plan, design, and conduct effective tests. Wiley
Pub, Indianapolis, IN, 2008. ISBN 9780470185483.

R. Software. Rational unified process best practices for software development teams,
1998. URL http://www.ibm.com/developerworks/rational/library/content/03July/

1000/1251/1251_bestpractices_TP026B.pdf.

SQLite. About sqlite, 2016. URL https://sqlite.org/about.html.

X. Sun, T. Plocher, and W. Qu. An Empirical Study on the Smallest Comfortable Button/Icon
Size on Touch Screen, pages 615–621. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.
ISBN 978-3-540-73287-7. doi: 10.1007/978-3-540-73287-7 71. URL http://dx.doi.org/10.

1007/978-3-540-73287-7_71.

L. L. Thomsen. Studieordning for bacheloruddannelsen i software, September 2015. URL http:

//www.sict.aau.dk/digitalAssets/203/203759_software-bachelor-e16.pdf.

TNS. Mobile devices 2015 - en undersøgelse om danskernes brug af mobile enheder, 2015. URL
http://danskemedier.dk/wp-content/uploads/2015/11/Mobile-Devices-2015.pdf.

UVM. Skolestart, 2015. URL http://www.uvm.dk/Uddannelser/Folkeskolen/

Fag-timetal-og-overgange/Skolestart-og-boernehaveklassen/Skolestart.

136

http://www.umsl.edu/~sauterv/analysis/prototyping/proto.html
http://www.umsl.edu/~sauterv/analysis/prototyping/proto.html
https://blog.jquery.com/2014/01/13/the-state-of-jquery-2014/
https://blog.jquery.com/2014/01/13/the-state-of-jquery-2014/
https://msdn.microsoft.com/en-us/library/aa292197.aspx
https://msdn.microsoft.com/en-us/library/hh848246.aspx
https://msdn.microsoft.com/en-us/library/hh848246.aspx
https://msdn.microsoft.com/en-us/library/ee658127.aspx
https://msdn.microsoft.com/en-us/library/ee658127.aspx
https://docs.asp.net/en/latest/intro.html#what-is-asp-net-core
https://docs.asp.net/en/latest/intro.html#what-is-asp-net-core
https://msdn.microsoft.com/en-us/library/ff649690.aspx
https://msdn.microsoft.com/en-us/library/ff649690.aspx
http://ba.iff.im/
https://nei.nih.gov/health/color_blindness/facts_about
https://nei.nih.gov/health/color_blindness/facts_about
https://www.nunit.org
https://secweb.cs.odu.edu/~zeil/cs361/web/website/Lectures/styles/pages/editdistance.html
https://secweb.cs.odu.edu/~zeil/cs361/web/website/Lectures/styles/pages/editdistance.html
http://www.ics.uci.edu/~eppstein/161/960227.html
http://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
http://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
https://sqlite.org/about.html
http://dx.doi.org/10.1007/978-3-540-73287-7_71
http://dx.doi.org/10.1007/978-3-540-73287-7_71
http://www.sict.aau.dk/digitalAssets/203/203759_software-bachelor-e16.pdf
http://www.sict.aau.dk/digitalAssets/203/203759_software-bachelor-e16.pdf
http://danskemedier.dk/wp-content/uploads/2015/11/Mobile-Devices-2015.pdf
http://www.uvm.dk/Uddannelser/Folkeskolen/Fag-timetal-og-overgange/Skolestart-og-boernehaveklassen/Skolestart
http://www.uvm.dk/Uddannelser/Folkeskolen/Fag-timetal-og-overgange/Skolestart-og-boernehaveklassen/Skolestart

Appendices

137

Appendix A

First Iteration: Preparations for Semi-
structured Interview

138

Sem
istruktureret interview

 til klatreklubben
 T

em
a

U
n

dertem
a

Forslag til opfølgen

de spørgsm
ål

D
em

ografi
A

ldersforskel
 Psykologisk
forskel
 K

øn
sfordelin

g

●
H

vad h
edder du?

●
H

vor gam
m

el er du?
●

H
vilken

 rolle h
ar du i klubben

?
●

H
vor m

an
ge m

edlem
m

er er der
i klubben

?
●

H
vad er det for n

ogle
m

en
n

esker er m
edlem

m
er i

klubben
?

●
H

vilke an
dre roller er der i klubben

?

●

D
eres aldre

●
D

eres erfarin
ger

●
D

eres køn

K
latrin

g
T

yper af
klatrin

g
 In

volverede
roller
 Plan

læ
gn

in
g

●
H

vilken
 type klatrin

g udfører
I?

●
H

vordan
 forløber en

 typisk
dag/aften

 i klatreklubben
?

●
E

r der et system
 i rutern

es
placerin

g?

●
H

vordan
 plan

læ
gger I brugen

●
H

vilken
 type klatrin

g foretræ
kker du?

○
H

vorfor?
●

K
an

 du vise os de forskellige typer af
klatreruter? B

åde in
den

dørs og
uden

dørs.

●

E
r der socialt sam

væ
r i løbet af dagen

?
●

H
ar m

an
 altid en

 spotter/h
jæ

lper m
ed?

●
H

vad er spotteren
s rolle?

●

E
r der et kort?

●

H
vordan

 ved m
an

 h
vorn

år en
 rute er

ledig?

af ruter?

●
H

vem
 skal væ

re spotter?

System

System
er til

boulderin
g

 System
er til

læ
n

gere ruter
m

ed reb

System
er til

evt. an
dre

typer klatrin
g

●
H

vordan
 adm

in
istrerer I ruter?

●
E

r der ét sam
let system

 til at
h

ån
dtere alle typer ruter?

●
H

vis der skal laves et n
yt

forbedret system
, h

vilke
øn

sker og krav h
ar I så til

dette?

●
K

an
 du vise os h

vordan
 det n

uvæ
ren

de
system

 ben
yttes?

●
H

vem
 h

ar rettigh
ed til at æ

n
dre ruter i

system
et?

●
H

vilke problem
er er der ved n

uvæ
ren

de
system

?
●

H
vor ofte æ

n
dres klatrerutern

e?
○

H
vorfor?

●
E

r det et system
 du er tilfreds m

ed?
●

E
r m

edlem
m

ern
e tilfredse?

●
E

r det n
em

t og overskueligt at ben
ytte?

○
H

vorfor?
○

H
vorfor ikke?

●
H

vad gør i h
vis en

 del af en
 rute går i

stykker?

●
H

vis ikke, h
vorfor er de delt op?

●
H

vad er ligh
eder og forskelle m

ellem

de forskellige typer ruter?

●
B

ookin
g af ruter, videoer,

brugervurderin
ger, kortoversigt,

billeder af ruter m
m

.

E
kstra

●

V
il det væ

re m
uligt at teste

forskellige prototyper i
klatreklubben

?

●
H

vem
 h

ar m
uligh

ed for at teste vores
prototyper og h

vorn
år?

Appendix B

First Iteration: Interview Transcriptions
(29th of September 2016)

Title: Interview #1 with Mattias
Duration: 00:37:00
File: interview1-del1.mp4 & interview1-del2.mp4

Henrik: Ja, jeg ved ikke. Vi har s̊adan en helt del ting vi gerne vil spørge dig 1

om. 2

Mattias: Ja da. 3

Henrik: De er ikke s̊adan super struktureret, det er mest bare nogle temaer og 4

emner vi gerne vil ind over. 5

Mattias: Det er helt fint. 6

Henrik: Og s̊a Mathias for bordenden tager nogle noter for at skrive ned hvad 7

hvad du fortæller os. S̊a vil Anton filme dig, og s̊a vil jeg spørge dig om 8

ting. 9

Mattias: Fedt. 10

Henrik: Og s̊a h̊aber jeg at vi ogs̊a kan f̊a en rundvisning eller et eller andet. 11

Mattias: Ja ja, helt sikkert. I har ikke været inde og kigge endnu? 12

Anton: Vi har lige været inde og se hallen. 13

Mattias: Ja. 14

Henrik: Vi ville heller ikke være i vejen, s̊a vi turde ikke g̊a for langt ind. Men 15

vi vil gerne se jeres nuværende systemer. 16

Mattias: Ja der er ikke meget system over det lige nu. 17

Henrik: Men det kan være at vi kan komme omkring det. 18

Henrik: Er du klar? 19

141

Appendix B. First Iteration: Interview Transcriptions (29th of September 2016)

Mattias: Ja. 20

Henrik: Til at starte med, vil vi gerne vide s̊adan en lille smule om dig, og hvem 21

du er som person, hvor gammel er du, hvad g̊ar du og laver. 22

Mattias: Ja. Jeg er 23 og jeg læser til maskiningenør ude p̊a universitetet, og jeg 23

har siddet i bestyrrelsen her i halvandet år nu, eller s̊adan noget, og jeg 24

begyndte at klatre for det er vel tre år siden nu, fordi jeg besteg Mont 25

Blanc og s̊a gik det op for mig, at for at gøre det lidt mere sikkert, end 26

det vi gjorde, s̊a var det nok en god idé at lære at klatre. 27

Henrik: Okay. 28

Mattias: Ja det s̊adan meget kort. 29

Henrik: Ja okay. Fair nok. Hvad s̊a med de andre der er her ude? Hvor mange 30

mennesker er der egentlig i klubben? 31

Mattias: Jamen jeg tror at i sidste opgørelse vi havde, s̊a var der 270 medlemmer. 32

Henrik: Hold da op. 33

Mattias: S̊a vi er vokset. Jeg tror vi er vokset med 70 eller s̊adan noget i den her 34

sæson. S̊a det er meget godt. Og nu kan jeg ikke lige huske det helt 35

præcist, men det kan jeg sende til jer bagefter hvis I gerne vil have det, 36

men det er et eller andet med at 40% er unge s̊adan i alderen 20-28(-30) 37

stykker eller s̊adan noget. S̊a er der 40% der er over den alder, og s̊a er 38

de sidste 20% børn, s̊adan et eller andet. 39

Et andet medlem af klubben (Hans-Christian) træder ind i lokalet. 40

Henrik: Kønsfordelingen, er det noget du s̊adan kan sige noget om eller er det 41

for. . . 42

Mattias: Kan du sige noget om det, Hans-Christian? 43

Henrik: Alts̊a ikke s̊adan i præcise tal. 44

Mattias: Der er overraskende mange piger. 45

Hans-Christian: Det er steget vil jeg sige, det har s̊adan typisk været at vi har haft piger 46

under 14 år, drenge over 20. Men det har ændret sig lidt. Det er rigtigt 47

at vi har f̊aet lidt flere piger ind i klubben ogs̊a, ogs̊a de der studerende 48

årgange men der er nok to tredjedele mænd, s̊adan overordnet set. 49

Mattias: Men det tror jeg ogs̊a vi kan finde noget om til jer. 50

Hans-Christian: Ja det kan vi jo trække ud. 51

Henrik: Jamen det kunne da egentlig s̊adan være okay. 52

Mattias: I kan bare f̊a hele vores medlemsstatistik. 53

142

Appendix B. First Iteration: Interview Transcriptions (29th of September 2016)

Henrik: Ja det kunne vi da selvfølgelig godt, det er måske ogs̊a svært at sige 54

meget om det n̊ar der er 270 medlemmer. Det var mere hvis der var 20, 55

s̊a kunne det være at du kendte dem alle sammen personligt. Men det 56

kan jeg godt se. 57

Mattias: Vi er en del. 58

Henrik: Væsentlig større end vi troede. N̊a ja, du sagde at du var i bestyrelsen. 59

Hvad inkluderer det s̊adan af forskellige roller? 60

Mattias: Jamen jeg tror vi sidder seks eller otte mand afhængigt af hvor mange 61

der kommer. Vi har jo s̊adan nogle suppleanter og s̊adan noget. Jamen 62

vi st̊ar for alt lige fra daglig drift. Lige for tiden er vi faktisk ved at 63

arbejde p̊a s̊adan et flytteprojekt sammen med sportshøjskolen. De skal 64

til at bygge en kæmpestor hal ovre p̊a deres grund. Og de har interesse 65

i at gøre det sammen med os fordi vi har en masse vægge og greb og 66

s̊adan noget. Og vi har en interesse i at gøre det sammen med dem fordi 67

de har en masse penge. Ej, det er meget simplificeret, men ja. S̊a vi er 68

i gang med at arbejde sammen med dem. Og vi er g̊aet videre, s̊a jeg 69

tror der er nogle arkitekter i gang med at tegne lige nu. Nogle forslag 70

til den hal her. S̊a jeg tror faktisk at de regner med at have det færdigt 71

om et års tid, s̊a det er s̊adan det store projekt s̊adan. 72

Henrik: Betyder det noget for din daglige dag her i klubben at du sidder i 73

bestyrelsen. Er det nogle specielle roller der har med klatring at gøre, 74

at du har? 75

Mattias: Jamen jeg st̊ar for eksempel for alle konkurrencerne, s̊a jeg st̊ar b̊ade for 76

at informere folk om de konkurrencer der er i Danmark, men ogs̊a for 77

at arrangere dem vi holder. Vi har lige holdt en stor konkurrence nede 78

p̊a havnen for eksempel, og vi holder en igen her til november og s̊a er 79

det ogs̊a mig der har lavet det system vi skal ind og se bagefter, med 80

whiteboardséne. 81

Henrik: Okay, hvad s̊a med. . . Er der andre der har nogle. . . Nej, det var egentlig 82

det vi gerne ville ind p̊a, det system med whiteboard. Er der nogen der 83

st̊ar for det specifikt, hvilke roller er der tilknyttet det? 84

Mattias: Alts̊a da jeg kom i klubben for snart to år siden, der kom jeg lige fra s̊adan 85

et kommercielt. . . Alts̊a man skelner mellem kommercielle klatecentre og 86

foreningsdrevne klatrecentre, og det her er jo et foreningsdrevet, s̊a alt 87

det er frivilligt. 88

89

Hvis I tager til Aarhus. . . I s̊adan noget som Aarhus Boulders, det er 90

kommercielt, det vil sige, at der er nogen der tjener penge p̊a det. S̊a 91

der har de ansatte til at gøre rent og holde styr p̊a tingene og lave ruter, 92

og det er jo det vi gerne vil snakke om. 93

94

Her der er det s̊adan klubbens medlemmer der laver ruterne og vi 95

har nogle folk der er rigtig dygtige til at skrue, vi har ogs̊a nogle der 96

ikke er s̊a dygtige. S̊a det der whiteboardsystem. . . alts̊a da jeg kom 97

143

Appendix B. First Iteration: Interview Transcriptions (29th of September 2016)

her var der ikke noget system, s̊a du kunne ikke. . . alts̊a n̊ar man kla- 98

trer. . . undskyld. . . det er s̊adan lidt svært at vide hvilket niveau man 99

taler p̊a, men n̊ar man klatrer. . . 100

Henrik: Vi ved ingenting. 101

Mattias: Nej lige præcis. Og tit s̊a spørger folk: “Hva’ g̊ar det ud p̊a at klatre 102

hurtigst op?”, men det det egentlig g̊ar ud p̊a, det er egentligt at klatre 103

s̊adan sværest mulige ruter. 104

Henrik: Ja. 105

Mattias: S̊a man laver en rute i én farve greb og s̊a kan man lave dem i forskel- 106

lige sværhedsgrader, og s̊a afhængig af hvor dygtig man er, s̊a klatrer 107

man ligesom den sværhedsgrad. Men hvis du s̊a kommer ind og der 108

ikke. . . Der ikke ligesom er nogen sværhedsgrad. . . Du kan ikke se hvor 109

svær den er, du kan ikke. . . Der er ikke engang lavet ruter i samme type 110

greb, s̊a er det utrolig svært at. . . S̊a skal man ligesom lave sit eget hver 111

gang. 112

Henrik: Ja, ja. Okay. 113

Mattias: S̊a det vi startede med at gøre, det var ligesom at sætte det i system. 114

Vi lavede s̊adan nogle sm̊a træklodser, i. . . Jeg tror vi har fem forskellige 115

farver, der ligesom indikerer sværhedsgraden. Og s̊a startgrebet, det 116

greb man ligesom skal starte i, det har s̊adan en farvemarking p̊a s̊adan 117

en klods. 118

119

Og da vi s̊a ligesom fik implementeret det system, og folk begyndte 120

at gøre det lige s̊a stille. . . Det er s̊adan med foreninger, der skal man 121

jo. . . Sm̊a skridt. Keep it simple. 122

123

S̊a fik vi lavet de her whiteboards. S̊a har vi markeret alle klodserne 124

med et nummer fra 1 til x. Og s̊a det man gør, hvis man har sat en ny 125

rute, s̊a sætter man en “rød klods nummer seks”, s̊a g̊ar man op til den 126

røde tavle, s̊a skriver man rute nummer seks. De er s̊a delt ind i fire 127

sektioner. Den her sektion, den her dato, hvem der har lavet den, og s̊a 128

en lille note, for eksempel hvis man skal hoppe langt eller et eller andet. 129

130

Og tanken med de whiteboards, det var s̊adan set ikke. . . Min første 131

tanke, det var s̊adan set, at det kunne være fedt med en app, men jeg 132

tror det har været et for stort et spring at gøre. S̊a det var lidt ligesom 133

skridtet før den her app. For nu er folk ligesom blevet vant til, “okay der 134

er et system i det, man skal ligesom registrere n̊ar man laver en rute”, og 135

endnu federe, s̊a endelig hvis man for eksempel ikke har været i klubben 136

i to uger, og man gerne vil se hvad der er blevet lavet nyt, s̊a kan man g̊a 137

hen og kigge p̊a den sværhedsgrad man klatrer og s̊a se okay: “datoer, 138

her er tre nye ruter. Dem skal jeg prøve”. For det kan godt være lidt 139

svært at overskue n̊ar der er s̊adan 50 ruter. 140

Henrik: Det forst̊ar jeg godt. Jeg ved ikke om vi m̊aske skulle prøve at kigge p̊a 141

144

Appendix B. First Iteration: Interview Transcriptions (29th of September 2016)

det nu? 142

Mattias: Det kan vi fint. 143

Henrik: . . . eller om det ville være helt åndsvagt at afbryde midt i det hele og 144

s̊adan noget. 145

Mattias: Jeg tror det giver god mening, for at give jer en forst̊aelse. Det tror jeg 146

giver god mening. Nu tror jeg ogs̊a at kaffen er færdig. 147

Vi g̊ar ind i den første klatrehal, hvor der klatres med reb. 148

Anton: S̊a før der var noget system, var det s̊a bare at der bare var ruter i farver? 149

Alts̊a var det ligesom bare farverne nogenlunde indikerede. 150

Mattias: Ja, og s̊a var det. . . der var ikke s̊a meget udskiftning, s̊a grebene blev 151

meget kalkede, og der var rigtig mange greb oven i hinanden, s̊a det var 152

meget svært at finde ud af. 153

154

Okay, s̊a vi har to typer klatring her. Den ene er rebklatring eller 155

ruteklatring, det er det man laver herinde, hvor man klatrer op med reb, 156

og s̊a herinde, der har vi bouldering hvor man klatrer uden reb, s̊a er 157

det ikke lige s̊a højt og s̊a er der en madras. 158

159

Herinde har vi ikke f̊aet sat systemet i gang endnu, fordi der ikke har 160

været super meget motivation for det. 161

Henrik: Må jeg have lov at spørge hvorfor? 162

Mattias: Jamen, det er en del mere besværligt at lave nye ruter herinde fordi man 163

skal ligesom til at hænge i et reb s̊a det tager meget længere tid. Og s̊a 164

er der ikke lige s̊a mange der laver den her form for klatring, som der er 165

i den anden. Og det er en lang historie hvorfor, men det er nok noget 166

med at det er nemmere og man kan gøre det selv. 167

168

Men i hvert fald min tanke dengang jeg lavede det gamle system, det 169

var ligesom at starte med bouldering, og hvis det kom til at køre rigtig 170

godt, s̊a kunne man altid prøve at f̊a det herind. 171

Henrik: Ja. 172

Vi g̊ar nu ind i boulder-hallen. 173

Mattias: Det her er bouldering. Man kan se der sidder s̊adan nogle farvede klodser 174

nede i bunden, ved nogle greb. S̊adan nogle træklodser, det er dem der 175

indikerer sværhedsgrad. 176

Mathias: Okay, s̊a de forskellige farver er forskellige sværhedsgrader eller hvordan? 177

145

Appendix B. First Iteration: Interview Transcriptions (29th of September 2016)

Mattias: Ja de forskellige farver klodser, lige præcis. 178

Vi g̊ar hen til det nuværende tavlesystem. 179

Mattias: Og s̊a kan man se herovre. . . Her kan man s̊a se hvad for nogle ruter der 180

er lavet hvorn̊ar af hvem. 181

Henrik: Og det er simpelthen p̊a engelsk? 182

Mattias: Jamen vi har en del udenlandske medlemmer heroppe, udvekslingsstud- 183

erende. 184

Henrik: Ja. 185

Mattias: S̊a vi kører det p̊a [UFORSTÅELIGT] 186

Henrik: Er det fordi, det er mere populært i de lande de kommer fra, end det er 187

her? 188

Mattias: Det ved jeg. . . Det ved jeg sgu ikke. Alts̊a mange spaniere kommer her. 189

Jeg tror der er rigtig mange der klatrer i Spanien. 190

Henrik: Okay. S̊a sværhedsgraden er grøn og helt op til hvid? 191

Mattias: Yes, lige præcis. Vi prøver nogenlunde at normalfordele det. 192

Henrik: Okay, cool. Det ser ret fedt ud. 193

Mattias: Har I taget noget idrætstøj med? 194

Henrik: Nej desværre, men jeg kunne dælme godt tænke mig at prøve det al- 195

ligevel. 196

Mattias: Det kan vi lige gøre. . . For der er jo faktisk mulighed for at komme ud 197

at prøve det. 198

Henrik: Ja. 199

Mattias: Det kunne I jo. . . 200

Henrik: Jamen vi har ogs̊a kigget p̊a der er. . . p̊a søndag, ikke? Den første søndag 201

i m̊aneden? 202

Mattias: Jo, der er ogs̊a noget. Det er nok en lidt nedern dag at komme p̊a, fordi 203

der er sygt mange mennesker. 204

Henrik: Okay. 205

Mattias: Det er bedre bare at komme en dag i klubbens åbningstider og s̊a betale 206

en halvtredser for indgang. S̊a kan man bare f̊a at lov til at g̊a amok. 207

Henrik: Okay. Det kan da godt være. Det virker meget interessant. 208

146

Appendix B. First Iteration: Interview Transcriptions (29th of September 2016)

Vi g̊ar tilbage til køkkenet hvor interviewet forsætter. 209

Henrik: Jo. . . S̊a nu har vi jo s̊a set de to forskellige typer der er, og set systemet 210

ogs̊a, men vi vil gerne høre lidt mere om de forskellige typer. Men nu 211

kan vi jo selvfølgelig godt forst̊a, at hvis vi skal udvikle noget, er det 212

primært bouldering det kommer til at handle om. 213

Mattias: Ja, ikke nødvendigvis. Alts̊a, systemet som I laver kan jo i princippet 214

fungere til begge dele, fuldstændig p̊a lige vilk̊ar. Men grunden til, at 215

jeg m̊aske siger, at I skal fokusere p̊a bouldering, det er fordi at der 216

er ligesom et system derinde. Der kommer klodser op, ruterne bliver 217

skiftet ud systematisk. Og hvis vi s̊a har lyst til at bruge appen inde i 218

rutehallen, alts̊a s̊a kan vi jo bare gøre det. Men det ville være rigtig 219

besværligt for jer. . . For der er intet system derinde, overhovedet, alts̊a. 220

Henrik: Men alts̊a s̊a, fra systemets synspunkt s̊a er der ikke rigtig nogen forskel 221

p̊a hvad det egentlig var man skulle kunne? 222

Mattias: Overhovedet ikke. 223

Henrik: N̊a men s̊a er det jo rimelig nemt. Helt fint. 224

225

Hvad foretrækker du selv, egentlig? Nu snakkede du s̊adan lidt om 226

at. . . 227

Mattias: Ja, alle har nok en. . . Alts̊a herhjemme, der boulder jeg mest, inde i 228

hallen. Men det er fordi det simpelthen er nemmest at træne derinde, 229

efter ens egen dagsorden. Men n̊ar jeg er udenfor, det er jo det man 230

rigtig gerne vil n̊ar man klatrer, komme ud p̊a rigtige klipper, s̊a er det 231

mest rute. Meget alpin-klatring, alts̊a bjergbestigning, kalder man det 232

ogs̊a. 233

Henrik: S̊a det er en stor høj klippevæg, hvor det g̊ar lige s̊a stille opad? 234

Mattias: Lige præcis. 235

Henrik: Cool. Er det s̊adan lidt at der m̊aske er lidt aldersfordeling s̊a? At det 236

m̊aske er de lidt ældre der. . . Der klatrer med reb herinde, eller hvad? 237

Mattias: Ja det er det faktisk. Bouldering det er den nyeste, ligesom diciplin, 238

inden for klatring. S̊a ja. 239

Henrik: Det virker m̊aske ogs̊a s̊adan lidt mere, hvad skal man sige, friskt, eller 240

s̊adan. . . Det er lidt mere bare til at g̊a til, s̊adan. . . 241

Mattias: Lige præcis. Ja, lige præcis. Det er s̊adan lidt mere FitnessWorld, man 242

kan komme n̊ar man har lyst. . . 243

Henrik: Ja okay. 244

Mattias: . . . Og fyre en workout af. 245

147

Appendix B. First Iteration: Interview Transcriptions (29th of September 2016)

Henrik: Jamen det kunne godt være at vi skulle overveje s̊adan noget, nemlig 246

med at hvis det er masser af unge mennesker der gør det, at s̊a skal vi 247

have et lidt mere ungt design p̊a en eller anden m̊ade. 248

Mattias: N̊a, ja. 249

Henrik: S̊a det er s̊adan set spændende nok. Fair nok. 250

Henrik: Hvem kan. . . Kan alle g̊a ind og skrive noget p̊a tavlerne derinde, eller 251

er det kun nogen i tillader? 252

Mattias: Ja. I princippet kan alle. Men man gør det jo kun, hvis man laver en 253

rute. Men ja, alle skal have mulighed for det. 254

Henrik: Okay, men hvad s̊a n̊ar man skal lave s̊adan en rute. Det kræver jo noget 255

værktøj. 256

Anton: Kan du sige hvad det er, det indebærer at lave en rute? 257

Mattias: Jamen alts̊a s̊a skal man jo finde nogle greb i en eller anden farve, der 258

ikke lige er p̊a væggen. Og s̊a skruer man dem bare op. Vi har værktøj 259

liggende derinde til det. Bolte og det hele. Men det er ikke s̊a meget det 260

at skrue man skal være god til. Det er mere det at. . . Alts̊a det tager jo 261

overraskende meget erfaring at lave. . . Hvis du tænker, okay jeg vil gerne 262

lave s̊adan en bevægelse her, s̊a for at f̊a grebet til at sidde rigtigt og 263

sætte føderne s̊a de passer og s̊adan noget. Det er overraskende svært. 264

Henrik: Ja, det kunne jeg godt forestille mig. 265

Mattias: S̊a det er derfor at det typisk er erfarne folk, der ligesom sætter ruterne 266

op. Men vi prøver hele tiden at invitere nye folk til de der rutebygnings- 267

dage. For ligesom at lære folk op, fordi jo flere der gider at bygge, jo 268

flere ruter kommer der. 269

Henrik: Er der ikke lidt en grænse for hvor mange ruter i kan have p̊a samme 270

tid? I løber vel tør for plads, gør i ikke? Eller er det ikke et problem. 271

Mattias: Jo. Jo, men vi skifter regelmæssigt ud. En gang hver anden m̊aned siger 272

vi, “nu ryder vi en fjerdedel af de boulder derinde”. S̊a bliver de ikke 273

fyldt op. 274

Anton: S̊a det er s̊adan nogle dage I har, hvor det er I skal. . . “I dag s̊a laver vi 275

en helt masse om”, og eller sker der ikke s̊a meget. S̊adan det er ikke 276

noget folk bare s̊adan gør, n̊ar de lige kommer ind en eftermiddag? 277

Mattias: Jo, det er det faktisk. Alts̊a det der sker er ligesom, p̊a én dag, det er at 278

vi ryder det. S̊a er der s̊adan en h̊andfuld eller to h̊andfulde mennesker 279

der g̊ar amok, og bare tager alle grebene ned i en sektion. 280

Anton: Og s̊a starter forfra nærmest. Alts̊a bare ryder tavlen ren. 281

Mattias: Lige præcis. 282

Henrik: Men n̊ar man sætter en enkelt ny rute op, kunne man s̊a godt finde p̊a 283

148

Appendix B. First Iteration: Interview Transcriptions (29th of September 2016)

at fjerne noget ogs̊a? S̊a man fjerner ikke andres ruter eller? 284

Mattias: Det er s̊adan. . . Det er der lidt tabu over. Man skal helst ikke. . . Man 285

m̊a helst ikke justere eller røre andres ruter. 286

Henrik: Okay. 287

Mattias: Og det er faktisk en anden grund til, at vi lavede systemet herinde. Det 288

er for at kunne se, okay, hvis der nu er kommet en ny rute op, som er 289

helt af helvedes til. . . 290

Henrik: Ja, s̊a kan man se hvem det er der har lavet den. 291

Mattias: Lige præcis! S̊a kan man nemlig se hvem der har lavet den. Ja, s̊a kan 292

man nemlig se hvem der har lavet den. Og s̊a kan man tage hen og 293

spørge folk: “Hey, er det okay, at jeg lige drejer det greb, s̊a jeg ikke 294

brækker min finger?” 295

Henrik: S̊a alts̊a, der kan godt være to ruter nærmest oven i hinanden, s̊adan 296

hvis de bare har forskellige farver s̊a, det er ikke s̊adan. . . ? 297

Mattias: Ja, det er ikke noget problem. Man kan faktisk ogs̊a godt lave dem oven 298

i hinanden med samme farve, s̊a det man gør det er, at man bare taper 299

dem. S̊a taper man den ene med rødt tape eller et eller andet. 300

Henrik: S̊a det er ikke s̊adan, at I løber tør for farver? 301

Mattias: Nej, nej, nej. 302

Henrik: Okay, det havde jeg egentligt troet at der var rimelig begrænset hvor 303

mange farver I kunne finde p̊a. 304

Mattias: Ja, men s̊a. . . Ja. . . Det. . . Nej, det er intet problem. 305

Henrik: Hvis du. . . Ja. . . Er det dig der har fundet p̊a systemet. Fordi alts̊a det 306

lyder som at du i hvert fald har været en rigtig stor del af det, men er 307

det noget du, s̊adan p̊a egen h̊and har fundet p̊a? 308

Mattias: Alts̊a med farverne derinde? 309

Henrik: Ja, og med lave et system ud af det. 310

Mattias: Jamen det. . . Nej, nej. . . Alts̊a i alle s̊adan veletablerede klatrehaller der 311

er der jo et system. Og alts̊a, der er jo ikke super meget man kan variere 312

p̊a s̊adan et system. Tingene skal graderes og der skal være en eller 313

anden m̊ade at holde styr p̊a det. 314

Henrik: Ja. Er der tilfredshed med det? 315

Mattias: Det. . . Det tror jeg. Der har i hvert fald været rigtig meget positiv 316

feedback p̊a at det er blevet mere organiseret. Folk er ogs̊a. . . Alts̊a folk 317

bruger det til det tror jeg. Og jeg tror hvis interfacet ligesom bliver 318

endnu mere brugervenligt, som f.eks. med en app, s̊a tror jeg det vil 319

blive helt suverænt. 320

149

Appendix B. First Iteration: Interview Transcriptions (29th of September 2016)

Henrik: Ja. 321

Anton: Har folk deres telefoner med sig derinde? Alts̊a det var mere det, at hvis 322

vi laver en app, s̊a er det ogs̊a nødvendigt, at teknologien er der. 323

Mattias: Det tror jeg helt sikkert. Der er i hvert fald. . . Musikken kører altid p̊a 324

telefoner derinde. Og der ligger altid telefoner overalt p̊a bordene og 325

s̊adan noget. 326

Henrik: Ja, det lagde jeg godt mærke til. 327

Mattias: Et lille trick er jo, at vi ikke har nogen skabe herude. . . Man kan ikke 328

l̊ase sine ting inde. Derfor tror jeg ogs̊a folk de tager deres telefoner med 329

ind. 330

Henrik: Okay. 331

Anton: Men de klatrer ikke med dem. De lægger dem p̊a jorden. 332

Mattias: Ja. 333

Anton: Ja. 334

Mattias: Ja. 335

Henrik: Eller s̊a kunne det jo være det var noget man skulle investere i nogle 336

skærme eller et eller andet. 337

Mattias: Jeg ved ikke. . . Har i kigget inde p̊a den der hjemmeside jeg sendte til 338

jer? Minimum Boulder i Schweiz? 339

Henrik: Ikke jeg personligt, nej. 340

Anton: Nej, det er der vist ikke nogen af os der har. 341

Mattias: Nej, okay. Det var faktisk dernede, at jeg fik idéen til hele den her app. 342

Alts̊a stjal idéen. Det er ikke mig der har fundet p̊a det. Men de havde 343

nemlig. . . De havde iPads i s̊adan nogle. . . L̊aste iPads st̊aende rundt 344

omkring i deres klatrehal. Og s̊a havde de s̊adan en app, og derinde, 345

der kunne man g̊a ind, s̊a kunne man vælge en sektion, s̊a havde de 346

s̊adan nogle billeder hvor man kunne trykke p̊a. . . S̊a kunne man vælge 347

en sektion og s̊a kunne man. . . Ja, s̊a kunne man se hvad for nogle ruter 348

der var. . . 349

Anton: Ja, der var tilgængelige i det omr̊ade. 350

Mattias: Lige præcis. S̊a det rigtig fede ved det var, at s̊a kunne man s̊adan give 351

dem en stjerne fra et til fem, s̊a man kunne, n̊ar man havde klatret en 352

rute, sige den var fed, den var ikke s̊a fed. For s̊a kunne man g̊a ind 353

og se, okay hvis man har begrænset tid, hvad for nogen er de fedeste 354

boulders. Og s̊a er det bare dem man klatrer. 355

Anton: Ja, eller hvis man kommer ind, som en ny og skal se, hvad skal jeg lige 356

prøve. 357

150

Appendix B. First Iteration: Interview Transcriptions (29th of September 2016)

Mattias: Lige præcis. 358

Anton: Hvad eksisterer der ellers af s̊adan nogle systemer heroppe. . . Hvad 359

kender du til, der s̊adan. . . Nu snakker du om, at der er kommercielle 360

klatreklubber, bruger. . . Hvordan gør de f.eks.? 361

Mattias: Alts̊a. . . I Danmark der bruger de det ikke. Jeg ved at der er en klatrek- 362

lub i. . . Som er. . . Den er stort set kommerciel, men det er en forening, 363

og p̊a Sjælland, der prøvede at indføre det og jeg har faktisk været ved 364

at kigge efter det, for at sende det til jer, men jeg tror sgu. . . Jeg tror 365

sgu de har annulleret det igen. 366

Anton: Snakker du s̊a om det her system vi snakkede om lige før? Som du havde 367

set? 368

Mattias: Nej, det er s̊a et andet system. Men jeg g̊ar ud fra, at det er nogenlunde 369

det samme, men jeg har aldrig set det. 370

Anton: Men de har et eller andet system ogs̊a? 371

Mattias: Ja, men tror s̊a m̊aske bare de har fjernet det. Jeg kunne ikke finde 372

noget om det p̊a nettet. 373

Anton: S̊a generelt, s̊a bruger folk ikke et eller andet system. 374

Mattias: Ikke i Danmark, i hvert fald. Men i udlandet der er det min helt klare 375

opfattelse, at det er meget populært at bruge. 376

Henrik: Okay, det der med ratings af dem f.eks. er det noget I har overvejet at 377

gøre. Det er selvfølgelig ikke lige som I har skrevet det op derinde. . . Lige 378

nu er det jo ikke s̊adan umiddelbart s̊a nemt at lave det. 379

Mattias: Nej, vi har s̊adan at man kan g̊a ind og sætte en stjerne. 380

Henrik: N̊a, kan man godt det, derinde? 381

Mattias: Ja, men det er jo ikke s̊adan. . . N̊ar der er én der har sat en stjerne, s̊a 382

kan man ikke sætte flere. 383

Henrik: Nej, okay, fair nok. 384

Henrik: Er der andre af s̊adan nogle ting ved systemet, som kunne være. . . Du 385

sagde noget før om, at det var egentlig det det var. . . Alts̊a systemet var 386

hvad det skulle være, s̊a skulle det bare være digitalt i stedet for. Det 387

lyder lidt s̊adan, men det er ikke s̊adan at du kunne forestille dig, at der 388

var nogen. . . 389

Anton: Er der nogle begrænsninger i jeres tavlesystem? 390

Mattias: Ja. Alts̊a jeg synes begrænsninger er at det er s̊adan. . . Det er lidt svært 391

at overskue. Alts̊a specielt, hvis man nu skal oven p̊a. Hvis man skal 392

kontrollere, at det er opdateret. S̊a skal man enten tage et billede af 393

det og g̊a op, og s̊a skal man notere ved siden af ens telefon, mens man 394

kigger p̊a billedet: Den rute er der ikke, den rute er der ikke. S̊a skal 395

151

Appendix B. First Iteration: Interview Transcriptions (29th of September 2016)

man nedenunder igen og slette og det ene og det andet. 396

Mattias: Alts̊a det ville fandme være nemt med s̊adan en app. Alts̊a hvis man 397

s̊a ogs̊a kunne sortere det efter dato og s̊adan noget. Det er jo nemt 398

at implementere, kunne jeg forestille mig. S̊a kunne man g̊a ind. . . ogs̊a 399

fordi det er vigtigt, at man kan. . . at man kan sortere det i sektorer. Vi 400

har en sektor A, B, C og D derinde. Fordi s̊a kan man g̊a ind, n̊ar man 401

f.eks. ryder sektor D, s̊a i stedet for, inde p̊a tavlen, der er sektor D 402

jo spredt over hele tavlen. Hvis man s̊a i appen bare kunne g̊a ind og 403

trykke slet det hele. 404

Interviewet sættes p̊a pause da en anden person kommer ind i lokalet. 405

Mattias: Hvad skal I egentlig kode det i? 406

Anton: P̊alagt C#. 407

Henrik: Skal vi godt nok det? 408

Anton: Det sagde semesterkoordinator som det allerførste, tror jeg. 409

Mathias: Men det er jo s̊a åbent for alt stadigvæk. . . 410

Anton: Ja, ja alts̊a om det er apps eller web eller desktop. . . Der er ikke rigtig 411

s̊a mange begrænsninger i det. Det er svært at lave embedded. . . 412

Mattias: Alts̊a det behøver heller ikke være en app. For mig er det fint nok 413

med. . . 414

Anton: Nej, nej, men det giver jo god nok mening, som en idé i hvert fald. 415

Henrik: Ja, det er jo noget alle brugerne p̊a sin vis har adgang til. . . 416

Anton: Fordi at det er den platform man har med sig. 417

Henrik: Ja. 418

Mathias: I forhold til administration lød det ogs̊a meget smart det med. . . Alts̊a 419

bare at kunne tage den med rundt og s̊a se, hvad er det der skal gøres. . . 420

Mattias: Kan man ikke ogs̊a det i en browser? 421

Mathias: Jo. 422

Mattias: Ja, lige præcis. 423

Anton: Men det er jo det, alts̊a det kunne ogs̊a sagtens blive en hjemmeside, 424

fordi at. . . At hvis bare det layout kan tilpasses skærmen, s̊a er der ikke 425

særlig stor forskel p̊a en hjemmeside og en mobilapp. 426

Henrik: Det er jo lidt det du siger med, at i ikke har nogen skabe og s̊a kan 427

folk ikke l̊ase dem inde. Hvis nu en dag i besluttede jeg for at f̊a skabe 428

152

Appendix B. First Iteration: Interview Transcriptions (29th of September 2016)

s̊a. . . Men det kan man jo selvfølgelig ogs̊a tage til den tid. Men s̊a kunne 429

det jo være at man blev nødt til at investere i en skærm. 430

Mattias: Men alts̊a, hvis. . . Det har vi s̊adan set talt om i bestyrelsen. Alts̊a hvis 431

der kommer et godt system op og køre. . . Vi har ogs̊a talt om at gøre 432

det selv, vi har nogle stykker der er software-data og s̊adan noget. 433

Anton: Jeg ser lige bestyrelsen, der er to ude fra Computer Science der. 434

Mattias: Ja, der er nemlig s̊a. 435

Anton: Det er s̊adan lige ved, at “er det s̊adan en hel Computer Science-klub i 436

har?”. 437

Mattias: S̊a det er bestemt ikke udelukket, hvis der kommer et godt system, at 438

vi kunne investere i s̊adan noget. 439

Henrik: Sker det nogensinde, at der g̊ar noget galt med ruterne? At de g̊ar i 440

stykker eller hvad skal man sige. . . Falder der et greb af eller? 441

Mattias: Nej, det gør der sgu ikke. 442

Henrik: S̊a det er ikke s̊adan at de skal vedligeholdes? 443

Mattias: Nej. 444

Anton: Kan du liste hvad er af forskellige informationer, som skal være i det her 445

system? Alts̊a s̊a er der s̊adan noget som hvor den starter, hvorn̊ar den 446

er oprettet og hvem der oprettede den. Hvad for nogle forskellige dele 447

best̊ar systemet af? 448

Mattias: Alts̊a som udgangspunkt de ting der st̊ar inde p̊a tavlen. Jeg kan ikke 449

lige huske dem allesammen i hovedet. . . 450

Anton: Jeg tror jeg har et billede af det, s̊a. . . 451

Mattias: Det er s̊adan grund tingene. Men noget jeg har set. . . Alts̊a i kan 452

ogs̊a. . . Jeg har set nogle ret fede systemer. . . Jeg har faktisk set s̊adan 453

noget VR, hvor man kan tage s̊adan en VR p̊a, og s̊a kan man s̊adan 454

kigge rundt. . . 455

Anton: Og s̊a er det s̊adan markeret op eller hvad? 456

Mattias: Lige præcis. S̊a kan man s̊adan skifte imellem ruterne og s̊a kan man 457

faktisk se én klatre ruterne. 458

Henrik: Okay, ja det kunne være fedt. 459

Anton: Jeg tror ogs̊a vi s̊a, at man kunne putte s̊adan nogle LED’er i klatregreb 460

og s̊a kunne man jo lave alt muligt fancy der. 461

Mattias: Men en anden ting jeg tænkte p̊a, det var ogs̊a noget. . . Alts̊a jeg ved 462

overhovedet ikke. . . Jeg er meget til det der med, at jo simplere og nem- 463

mere det er at bruge, jo nemmere vil folk have med at tage det til sig. 464

153

Appendix B. First Iteration: Interview Transcriptions (29th of September 2016)

Henrik: Det er ogs̊a meget af det vores semester handler om s̊adan set, s̊a det er 465

jo fint nok. 466

Mattias: Men features man kunne tænke p̊a det var s̊adan noget som f.eks. hvis 467

man tager et billede af væggen. Jeg ved. . . Der findes faktisk nogen 468

apps nu, hvor man kan tage et billede af en væg og s̊a kan man s̊adan 469

trykke. . . Eller s̊adan markere grebene. Put s̊adan nogle cirkler om dem 470

og s̊a kan man vedlægge dem ruten. 471

Henrik: Okay. 472

Anton: Alts̊a nærmest bare tegne ruten og s̊a er den defineret og s̊a kan du smide 473

den ind i systemet. 474

Mattias: Lige præcis, for hvis man s̊a g̊ar ind p̊a appen der og kigger: “okay den 475

her rute har f̊aet gode anmeldelse”, s̊a kan man faktisk se et billede af 476

væggen og se grebene, ligesom markeret. S̊a man ikke er i tvivl om det. 477

Mathias: Men n̊ar man s̊a skal op og klatre en rute, kan det være svært s̊adan at 478

vide hvordan man skal g̊a til ruten, alts̊a hvad ham der har lavet den, 479

har tænkt eller er det s̊adan meget personligt med hvordan man tackler 480

ruten. 481

Mattias: Det er meget individuelt. Men det er ogs̊a en stor del af udfordringen 482

faktisk, n̊ar man klatrer. 483

Henrik: Men det er ikke s̊adan at der skulle være en guide til hvordan man klarer 484

ruten s̊a? 485

Mattias: Nej, nej. Alts̊a maks. en note, hvor der st̊ar, du m̊a ikke bruge højre 486

ben, eller lignende. . . S̊adan nogle ting kan der godt være. . . S̊adan noget 487

med at du ikke m̊a bruge kanterne. 488

Anton: Nu ved jeg at Bøgholm f.eks. snakkede om at det kunne være man kunne 489

vedlægge en video af en der klatrer ruten eller s̊adan noget. 490

Mattias: Ja. Det er i hvert fald en fed feature at have muligheden for det. 491

Henrik: Men det var det der med, at det var en form for guide til hvordan man 492

skulle gøre det s̊a, men hvis folk hellere selv vil finde ud af hvordan man 493

skal gøre det s̊a. . . 494

Mattias: N̊arh! Ja, men s̊a lader man være med at se videoen. 495

Henrik: Ja, fair nok. 496

Mattias: Det. . . Man har en ting i klatring man kalder beta, som er ligesom. . . S̊a 497

hvis du nu skal op og klatre og du har sygt mange problemer med ruten, 498

fordi du prøver at flytte din højre h̊and p̊a en eller anden bestemt m̊ade, 499

s̊a kan jeg komme hen til det og s̊a kan jeg sige, “det er fordi du faktisk 500

skal bruge venstre h̊and!”. S̊a har jeg lige givet dig beta til ruten. 501

Anton: Okay. 502

154

Appendix B. First Iteration: Interview Transcriptions (29th of September 2016)

Mattias: Det taler man rigtig meget om, ligesom at give hinanden beta og beta- 503

videoer og s̊adan noget. Man kan g̊a ind p̊a s̊adan nogle populære 504

udendørsruter, der kan man g̊a ind p̊a nettet og finde video-beta, til 505

dem. S̊a man kan g̊a ind og se hvordan det er nemmest at klatre. 506

Anton: F.eks. s̊adan nogle alpinruter eller et eller andet. 507

Mattias: Nej, lige præcis ikke alpinruter. 508

Anton: Nej, men s̊adan noget som stenen derude m̊aske eller et eller andet, lad 509

os sige det var en populær rute. 510

Mattias: Ja, hvis den var super populær, ja s̊a kunne man helt sikkert det ja. 511

Mattias: S̊a det kunne være en rigtig cool funktion at kunne uploade video-beta. 512

Henrik: Men der snakker vi bare enkelte greb eller enkelte. . . fra det ene greb til 513

det andet? Eller skulle det være hele ruten? 514

Anton: Det ved jeg ikke, alts̊a det er jo bare hints i det hele taget, vel. Alts̊a 515

s̊adan helt generelt. 516

Mattias: Ja, ja. 517

Anton: Alts̊a en eller anden form for brugerinteraktion, hvor det er man kan 518

vedhæfte en eller anden kommentar eller et eller andet. S̊a det kunne 519

bare være s̊adan et kommentarsystem f.eks. 520

Mattias: Ja, eller en video. Det kunne ogs̊a være meget cool. 521

Henrik: Ja. Umiddelbart vil jeg mene, at vi er kommet omkring de fleste af ting 522

vi har planlagt. S̊a var der noget af det, som røg i vasken. Vi havde 523

regnet lidt mere med, at der var. . . At vi kunne fokusere lidt mere p̊a 524

s̊adan, at der var bouldering, s̊a var der reb og s̊a var det s̊adan at skulle 525

lave noget til det ene og lave noget til det andet. 526

Anton: Ja, hvis der nogen forskel p̊a det, s̊a havde det jo selvfølgelig været inter- 527

essant, men det er jo fedt nok egentligt, at fra et systemudviklingsper- 528

spektiv at de er ens. 529

Mattias: Ja, I kan godt se, at hvis I laver et system hvor vi kan g̊a ind og tilføje 530

sektorer, s̊a deler vi jo bare der, ind i fem sektorer og s̊a tilføjer vi fem 531

nye sektorer. 532

Anton: Grebene, er de. . . Nu holdt jeg ikke lige øje med det derinde, men er 533

de p̊a s̊adan et regulært grid? Alts̊a er de s̊adan f.eks. lige afstand fra 534

hinanden alle de huller, hvor der er mulighed for at sætte greb i? 535

Mattias: Jaah. 536

Anton: Og er det forskelligt. . . Er det f.eks. regulært herinde i reb-hallen, men 537

noget andet inde i boulder-hallen? 538

Mattias: Jeg tror det er rimelig. . . At grid’et er rimelig ens p̊a pladerne, men 539

155

Appendix B. First Iteration: Interview Transcriptions (29th of September 2016)

pladerne sidder jo s̊adan i s̊adan noget. . . triangel-noget. 540

Anton: S̊a de sidder i nogle sjove vinkler? 541

Mattias: Ja. 542

Mattias: En anden ting til. . . Lige til beta-funktionen jeg tænkte p̊a der. Det 543

er ikke s̊a meget beta, det er mere det der med med ligesom at 544

kunne. . . Alts̊a det er vigtigt at gøre klart, hvad for en rute det er, ikke? 545

Og en af tingene det er jo de der klodser med nummeret p̊a. Men det 546

kunne ogs̊a være enormt cool, hvis man bare kunne uploade et billede en- 547

ten af hele ruten, som det vi talte om, hvor man kunne markere grebene. 548

Eller m̊aske bare start grebet, for inde i boulder og s̊adan set ogs̊a rute- 549

hallen, der er det s̊adan at man starter altid i ét greb eller to greb og s̊a 550

er det ligesom derfra det begynder. S̊a det kunne være meget cool, hvis 551

man kunne. . . Måske bare tage. . . Uploade et billede af start-grebet. 552

Anton: En anden m̊ade at markere det p̊a. 553

Mattias: Ja, lige præcis, fordi s̊a kan man n̊ar man s̊a er inde i appen, s̊a kan man 554

ligesom se, “okay, det er start-grebet”, s̊a kan man kigge, “okay, s̊a er 555

dér den starter, ingen tvivl!”. 556

Henrik: Men ville der ikke være en tvivl om det? Ville det ikke være svært at 557

finde udfra et billede af et enkelt greb. . . 558

Der er mistet omkring 30 sekunder af interviewet, da optagelsen blev for lang for kameraet, 559

og der skulle startes en ny optagelse 560

Mathias: . . . systemet hvis nu I s̊adan. . . I snakkede om nye lokaler og ny hal, med 561

det nye der. S̊a det skal jo noget man ligesom kan tage med sig, og 562

oprette en ny sektion, hvis nu hallen bliver større, s̊a p̊a den m̊ade bliver 563

der ogs̊a noget p̊a den m̊ade. Lidt administrering. . . 564

Mattias: Jamen det kunne være super ideelt hvis den m̊ade man bare oprettede en 565

sektion p̊a, alts̊a s̊adan noget som at oprette sektioner og s̊adan noget, 566

det skal m̊aske være forbeholdt administratorer, men at oprete ruter, 567

skal alle brugere kunne. Men s̊adan noget som at oprette en sektion. . . at 568

man m̊aske bare uploader et billede af sektionen; et stort billede, og s̊a 569

kan give den et navn, mere behøver der ikke være i det. 570

Anton: Ellers s̊a ændrer hallerne sig jo ikke s̊adan lige, s̊a der er ogs̊a, hvis det 571

var man havde s̊adan et eller andet ovenfra-kort eller et eller andet, en 572

eller anden kort beskrivelse af det m̊aske. 573

Mattias: Ja. Det kunne ogs̊a være lidt cool 574

Anton: Hvis der var en nemmere m̊ade end bare et billede, og give en indikation 575

af hvor i rummet det var 576

Mattias: Jeg tror bare at det er rigtig vigtigt I har i baghovedet, at folk er lud- 577

156

Appendix B. First Iteration: Interview Transcriptions (29th of September 2016)

dovne. Der er aldrig nogen der vil gide og lave et fedt s̊adan overview- 578

billede. Alts̊a det er derfor jeg tænker s̊adan noget som bare at tage 579

et billede, alts̊a enhver kan jo g̊a derind lige nu, snappe et billede af en 580

sektion, uploade. Det tager fire sekunder, det er nemt at gøre. Men hvis 581

man skal til at ind og tegne. . . 582

Anton: Nej, det var mere hvis det var s̊adan noget sektion der skulle gøres 583

én gang i tre år, s̊a kunne man. . . Alts̊a der ville jo ikke være rigtig 584

nødvendigvis nogen forskel i systemet hvis der var at der alligevel bare 585

var support for et billede om man s̊a havde brugt lang tid p̊a det billede 586

eller om det bare var et der lige var tegnet, s̊adan en hurtig tegning 587

Mattias: Helt sikkert 588

Henrik: Men øhh. . . Jamen det er jo s̊adan at vi gerne, vi kunne godt tænke os 589

at den m̊ade vi kunne arbejde p̊a, det var at vi g̊ar hjem nu, eller ikke 590

nødvendigvis lige nu. . . 591

Mathias: . . . og s̊a er vi klar i morgen 592

Henrik: Ja, lige præcis. . . s̊a laver vi en eller anden form for prototype af det her, 593

p̊a en meget simpel m̊ade, evt. nok bare p̊a papir, med en helt masse 594

sider vi klipper ud og nogle knapper og s̊adan noget, og at vi s̊a kan 595

komme tilbage en anden gang. . . 596

Mattias: Ja da, selvfølgelig 597

Henrik: . . . og teste, ikke nødvendigvis bare p̊a dig, men m̊aske ogs̊a p̊a nogle 598

andre i klubben. Det er ikke noget vi behøver, men det kunne være 599

meget interessant at se hvad. . . 600

Matthias: Jeg synes da det er en genial idé at komme herop n̊ar der er allerflest 601

mennesker, og s̊a dele s̊adan en prototype der ud p̊a papir, eller hvad 602

det er. 603

Henrik: Ej vi kan nok ikke dele den ud, det er vist noget værre rod, det er s̊adan 604

noget med at s̊a har vi s̊adan en masse sm̊a knapper vi har klippet ud. . . 605

Anton: Og s̊a siger du hvor du vil trykke og s̊a flytter vi rundt p̊a papirene 606

Henrik: . . . det er noget værre arbejde, men vi kan gøre det med et par stykker, 607

m̊aske endda 10 hvis vi er heldige, det kunne være super fedt. Og s̊a f̊a 608

noget feedback p̊a, alts̊a hvad for noget der virker og hvad for noget der 609

ikke virker, hvad der er brugervenligt og hvad de synes var helt hen i 610

vejret 611

Mattias: Det tror jeg helt sikkert at folk gerne vil hjælpe med 612

Anton: Det er i hvert fald en stor del af vores semesters undervisning 613

Henrik: Det er primært det, det handler om 614

Mattias: Alts̊a interfacet? 615

157

Appendix B. First Iteration: Interview Transcriptions (29th of September 2016)

Anton: Det her med at have en iterativ proces og lave nogle sm̊a ændringer, se 616

hvordan de virker med brugerne og s̊a arbejde videre derfra. Ogs̊a s̊a vi 617

hele tiden er p̊a sporet af: hvordan n̊ar vi til det bedst muilige resultat? 618

Henrik: Yes, og involvere brugeren i det, klienterne m̊a det s̊a være 619

Mattias: Jamen der er 270 medlemmer der gerne vil hjælpe, s̊a. . . 620

Henrik: Jamen det er jo det. Det kunne være super fedt 621

Anton: Hvordan fungerer det alts̊a, fordi jeg tror da ikke. . . er I 270 medlemmer 622

herinde hver anden torsdag eller hvad? 623

Mattias: Overhovedet ikke, jeg tror vi er en h̊ard kerne p̊a en 10-15 mennesker 624

der er her en fire gange om ugen eller s̊adan noget 625

Anton: S̊a andre de dropper s̊adan ind? 626

Mattias: Jeg tror de er her en gang hver anden uge eller s̊adan noget, og s̊a er der 627

mange af medlemmerne der har børn, eller forældre. 628

Anton: P̊a s̊adan en typisk mødeaften, hvor mange er i s̊a? 629

Mattias: Der er nok en 50-70 mennesker. Men det er jo s̊a over en hel aften. 630

Anton: Og s̊a en hel aften, det er fra hvorn̊ar til hvorn̊ar? 631

Mattias: Det er vel fra. . . Nu omkring og s̊a til klokken en ti-11 stykker. 632

Anton: Okay, og s̊a dropper folk bare ind og g̊ar, som det passer. 633

Mattias: Ja, alts̊a vi har 24/7. . . 24/7-̊abent, s̊a folk kan i princippet komme og 634

g̊a, som de har lyst. 635

Anton: Er der nogen der dropper herind for at sidde og arbejde p̊a deres skolear- 636

bejde f.eks. . . Bliver det brugt som s̊adan et fritidsrum? 637

Mattias: Det er ikke mit indtryk. 638

Anton: Nej. 639

Mattias: Det tror jeg sgu ikke. 640

Anton: Men folk dropper jo s̊a ind for at træne, n̊ar det s̊a lige passer dem f.eks. 641

Og bruger det som s̊adan et fitnesscenter m̊aske? 642

Mattias: Ja, helt sikkert. Helt sikkert. 643

Mathias: Kommer man alene eller kommer man i sm̊a grupper. . . Alts̊a hvis nu 644

jeg vil træne klokken seks om morgenen alene, er det s̊a fint? 645

Mattias: Ja, ja. Det kan du gøre som du har lyst. Men det er jo s̊adan lidt. . . Vi 646

har jo klubaften tirsdag, torsdag, søndag og mandag. Og der er det 647

typisk, at man kommer s̊adan lige omkring nu her. S̊a samles man lige- 648

som derinde og hygger mens man klatrer. Det er overraskende. . . Selvom 649

158

Appendix B. First Iteration: Interview Transcriptions (29th of September 2016)

det er individuelt, s̊a er det overraskende socialt. Det er meget fedt. 650

Henrik: Ja, det kan jeg godt se. Der er meget med noget feedback og hjælpe 651

hinanden og s̊adan noget. Lyder det til. 652

Mattias: Men jeg synes da i skal, hvis i har lyst selvfølgelig. . . S̊a skal i da bare 653

komme herop en dag. En mandag, en tirsdag, en torsdag eller en søndag. 654

I kan bare skrive til mig inden, s̊a skal jeg nok lukke jer ind. I behøver 655

heller ikke betale for indgang. Og s̊a kan i prøve at klatre. S̊a kan i selv 656

opleve, hvordan systemet er derinde. 657

Henrik: Ja, det kunne være super fedt. 658

Mattias: Alts̊a fordi, i kommer helt sikkert til at tænkte: “det er fandme lidt 659

svært at finde rundt i”. Og det er jo suverænt, fordi s̊a kan i ligesom. . . 660

Henrik: Ja, ja. S̊a kan vi f̊a nogle idéer. 661

Mathias: Ja, ja. S̊a ved vi hvad vi skal. 662

Anton: S̊a har vi noget at arbejde med. 663

Henrik: Cool. Det kunne jeg i hvert fald godt tænke mig. 664

Mathias: Ja, det snakkede vi om, at det kunne da være super fedt at prøve det 665

p̊a et eller andet tidspunkt i projektet. 666

Henrik: Det eneste, er at det ligger lidt langt væk. 667

Mattias: Det er I meget velkomne til. 668

Anton: Tak. 669

Mattias: I m̊a ogs̊a gerne tage de fire andre med. 670

Henrik: Ja, s̊a m̊a vi jo se om vi kan lokke dem til det s̊a. 671

Anton: Vi har talt lidt om at prøve og finde en dag i hvert fald. Men alts̊a. . . Ja, 672

skal vi ikke sige, at vi prøver at aftale en dag. Måske. 673

Mattias: I skriver bare. Jeg er her tirsdag, torsdag, lørdag, søndag. S̊a der kan 674

i. . . 675

Mathias: Men det kunne jo ogs̊a eventuelt ogs̊a være i forbindelse med en proto- 676

type. Hvis vi nu kom herud og skal prøve det lidt. 677

Henrik: Ja, s̊a kunne vi bruge en hel aften her og s̊a kunne vi måske skiftes lidt 678

til at. . . Til at sidde med den og s̊a er der nogen der klatrer. Vi kan 679

heller ikke være syv mennesker der sidder omkring én stakkels person. 680

Mattias: N̊ar man ikke er vant til det, s̊a kan man ikke klatre meget mere end 20 681

minutter alligevel, s̊a begynder ens fingre at være ødelagte. 682

Henrik: Fair nok. 683

159

Appendix B. First Iteration: Interview Transcriptions (29th of September 2016)

Anton: S̊a begynder armene helt at ryste. Ej, jeg har været ude at klatre lidt 684

med reb før, ja. Jeg har været her nogle gange før. Andreas Bagger, 685

ham ved jeg ikke om du kender? 686

Mattias: Jo, jo, jo. 687

Anton: Min storebror, som har været. . . 688

Mattias: Jo, jo, men han bor i København nu, gør han ikke? 689

Anton: Han er flyttet til Roskilde. Ja. . . Ham. . . Jeg presser p̊a min søster, for 690

at f̊a dem til at flytte tilbage igen. Men ja. 691

Mathias: Jamen godt s̊a. Var det det? 692

Henrik: Ja, jeg tror det var det. Du skal have tusind tak for din hjælp i hvert 693

fald. 694

Mattias: Jamen jeg synes da bare det er fedt. En fed mulighed. 695

160

Appendix C

First Iteration: Notes From Second In-
terview With Paper Prototype (25th of
October, 2016)

System definition Hornum synes at systemdefinitionen lød fyldestgørende og han havde ikke
yderligere kommentarer.

Citater:

• Spurgt ind til, hvilken platform, der sigtes efter. Hertil svarede Hornum, at PC umiddelbart
ikke er nødvendig, da alle har en smartphone med i klatreklubben, om de s̊a efterlader den
i omklædningsrummet eller tager den med ind i hallerne er irrelevant. Han nævnte dog at
AKK har én PC st̊aende, som evt. kan benyttes af de, som ikke har en smartphone med.
Der kunne ogs̊a bruges tablets, men det er noget, som AKK skal vælge at investere i først.

• Hornum havde problemer med at forst̊a kravet: ”be dynamics in regards to context”, dette
kunne derfor uddybes, s̊a man forst̊ar at der menes, at systemet skal kunne tilpasses, hvis
sektioner ændres (slettes eller oprettes).

Minimumskrav til rute Sværhedsgradsblok og nummer, som markerer startblokken af ruten.
Citater:

• ”Da dem, som skal g̊a ind og lave ruter er frivillige, s̊a skal det [systemet] være s̊a problemfrit
og simpelt som muligt.”. Der skal alts̊a være s̊a lidt tvang ift. Fx minimumskrav til en
rute.

• I forbindelse med ovenst̊aende, nævnte Hornum ogs̊a, at det ville være en d̊arlig idé, hvis
alle medlemmer skulle logge ind, da det ikke er nødvendigt, og da medlemmerne ikke gider.
Administrator-brugere har brug for et log-in. De kan fx cleare en sektion, slette ruter mv.

• S̊a f̊a begrænsninger som muligt, derfor skal alle have lov til at oprette ruter mv.

• Sværhedsgraden p̊a en rute ændres sjældent. Man har ofte en idé om, hvilken sværhedsgrad
en rute har, ved dens oprettelse. Den, der laver ruten, bestemmer sværhedsgraden.

• Én gang årligt ryddes hele boulder-hallen i forbindelse med konkurrence. Derudover er
det ikke ofte, at en rute fjernes, men dette kan begrænses til en administrator-rettighed,
s̊a man undg̊ar at ruter bliver fejlagtigt slettet. Det kan være en mulighed at anmode

161

Appendix C. First Iteration: Notes From Second Interview With Paper Prototype (25th of
October, 2016)

en administrator om at f̊a en specifik rute slettet, hertil kan man skrive en besked, der
begrunder forespørgslen.

Papirprototypen

• Da Hornum s̊a papirprototypen, kunne han umiddelbart ikke se, hvad fx A2 betød. Dette
mente han kunne gøres simplere og mere pædagogisk, hvis man fulgte metoden, de allerede
bruger p̊a deres whiteboards. Dvs. at lave en farvet firkant med et tal indeni, der sym-
boliserer hhv. sværhedsgrad og begyndelsesblok/greb. Til højre for denne firkant ville der
st̊a, hvilken sektion banen er p̊a.

• Hornum synes umiddelbart papirprototypen var nem og intuitiv, men ville fx gerne uddybe,
hvad sorterings-funktionerne betød. Dette kunne gøres ved at skrive et ord ovenfor drop-
down menuerne, der forklarede, hvad man sorterer efter.

• Hornum sagde at alle i AKK godt ved, hvilken farve passer med hvilken sværhedsgrad,
derfor skal vi ikke uddybe dette! (vigtigt!)

• Tekst-beta er ikke en god ide. ”Man skal være god til at formulere sig, hvis man skal give
beta p̊a tekst”.

·

Ekstra funktioner

• Hornum nævnte, at det kunne være nice med en funktion til at sætte cirkler omkring alle
greb/blokke i en bestemt rute.

• Hornum mente, at det ville være smart, hvis alle ekstra-funktioner fik et logo. Fx, hvis
der var beta tilgængelig, ville der være et farvet logo med et B i, hvorimod, hvis beta
ikke er tilgængelig, ville dette logo være gr̊at. Dette mener han ville være smart for alle
ekstra-funktioner.

• Hornum mener at muligheden for at bedømme en rute ville være ”en rigtig god idé”. Han
nævnte dog desuden ogs̊a, at s̊adanne ting vil være en 4’er p̊a requirements, og at det
vigtigste er at systemet f̊ar den funktionalitet, som tavlesystemet i forvejen har.

• Det kunne være fedt, at kunne kommentere p̊a ruter. Dette er ikke det samme som tekst-
beta.

• Kunne være en meget grineren feature at kunne give ruten et navn.

162

Appendix D

First Iteration: Usability Test (9th of Novem-
ber 2016)

Task 1

a) In the system you see a list of routes - find route blue 38 in section c.

b) Find a route that is created by Hans.

Task 2

a) Find a route on the wall and add it to the system.

b) You find that the route you have just created should have had the black grade. Change
this in the system.

Test person 1 (Customer)
Task Description Usability problems
1a Found the route in about five seconds. Did not

encounter any problems finding said route.
1b To find the route Hans had created, he scrolled

down the list of all routes and found Hans’s
route. Did not realise he could sort after route’s
creator alphabetically. When he asked if there
was an easier way to do it, and was told there
was, he found out it was possible to do exactly
that.

P1, P7

2a He quickly realised how to create a route but
forgot to add a section to it, and did not know
why it could not be created, but found out on
his own relatively quickly, that he forgot to add
a section.

P2

2b No problems editing the created route.
Comments

Table D.1: Descriptions and usability problems for tasks performed by test person 1.

163

Appendix D. First Iteration: Usability Test (9th of November 2016)

Test person 2
Task Description Usability problems
1a Found the route by filtering by sections. Did not

sort after grade.
1b Had problems finding a route created by Hans.

She scrolled through the list but could not find
him at first glance, so went to the top and at-
tempted to create a new route. When going
to the create new route page, she found a field
called Author, and mistakenly thought that for a
way to search for the author. When she scrolled
to the bottom, she realised she was about to cre-
ate a new route, so went back and scrolled again,
and found the route this time. She did not notice
that it was possible to sort by author.

P1, P3, P7

2a Did not have any problems at all.
2b Did not have any problems at all.
Comments The system gives a better overview than their existing system (the white-

boards). The idea behind rating is a good idea. She does not think the
route needs an author.

Table D.2: Descriptions and usability problems for tasks performed by test person 2.

Test person 3
Task Description Usability problems
1a Scrolls down to find the route, and finds it easily.

When later asked if she can do it more easily, she
finds out she can sort and filter, then does so.

P4

1b Sorts by author and finds a route by Hans.
2a When creating the route, she gets an error-

message, stating that the route already existed.
She did not have any problems understanding
the error-message, She asked if she should just
change the number and the facilitator answered
yes. Then she just changed the route number
and created the route.

2b Found out how to edit the newly created route
and was able to change the grade. Did not en-
counter any problems.

Comments Works well.

Table D.3: Descriptions and usability problems for tasks performed by test person 3.

164

Appendix D. First Iteration: Usability Test (9th of November 2016)

Test person 4
Task Description Usability problems
1a Filters grade, then section, and finds the specific

route.
1b Right as he begins the task, he complains about

a missing clear-filters button. He has problems
finding Hans’s route since he believes the + is a
search function, and he believes finding the route
created by Hans is too difficult, so he decides not
to solve the task. Mentions it would be nice with
a search function that can search for whatever
string you put in.

P3, P7

2a + in his mind means ”add”, so he presses the +
button, and creates the route without any trou-
bles at all.

2b Edits the route but did not save the changes.
When asked if the route had now been edited,
he scrolled to the bottom, where he found a
save button, then mentioned that it was too old-
school, and the route should be edited right away
as soon as you made any change to it.

P6

Comments Old-school save button. When editing the route, the edits should be en-
abled right as something got edited, not when the save button is pressed.
No need for a save button when it’s not a critical system. Needs a but-
ton for more advanced searches / sorts, so he can search for any possible
string. He wants more advanced searches and recommends elastic sort.
He wants a button for every possible search, so he does not have to do
multiple touches to do a search or apply a filter. The layout was very
intuitive however.

Table D.4: Descriptions and usability problems for tasks performed by test person 4.

165

Appendix D. First Iteration: Usability Test (9th of November 2016)

Test person 5
Task Description Usability problems
1a Scrolls down and finds the route. When asked

if he can do it a different way, he finds out it is
possible to filter by grade and section, so chooses
to do so to find the route.

P4

1b Scrolls down to find Hans’s route, but cannot
seem to find any route by him. So he tries cre-
ating a route, and realises he is about to make a
route, then goes back and gives up.

P3, P7

2a Could without a problem create a route. When
he went back to the list of routes, he could not
find his own since the filters was applied and
the list of routes had not been updated to list
the recently created route, even though it should
have.

P5

2b Did not encounter any problems editing the spe-
cific route.

Comments

Table D.5: Descriptions and usability problems for tasks performed by test person 5.

166

Appendix E

Second Iteration: Usability Test (1st of
December 2016)

In our second usability test, we got 5 people to test it, all of them males.

Task 1

a) In the system you see a list of routes - find the oldest route with a blue grade.

b) Find a route that is created by Hans.

c) Use the search bar to find a route of white grade and a route number of 6, in section B.

Task 2

a) Find a route on the wall and add it to the system. You should include an image of the
route, and mark the holds that are part of the route.

b) You want to add tape to the route you just added. Find the route you just added, and add
a tape colour.

Task 3

a) Find the route with a black grade and route number 10 located in section A, and add a
video beta to that route.

Task 4

a) Imagine you just climbed one of the routes located in the system. Give the route a rating
and add a comment to the route, based on on your rating of the route e.g ”Great route”.

167

Appendix E. Second Iteration: Usability Test (1st of December 2016)

Test person 1
Task Description Usability problems
1a Could not find the route. Thought the colour

of the hold was the grade colour. Kept scrolling
but only found the wrong routes, one of them
with a green grade.

P1, P2

1b Searches for Hans, and finds a route made by
him.

P9, P12

1c Does not use the search functionality, but uses
the filters instead. When explicitly asked to use
the search bar, he searches for ”6 White”, and
finds the route.

P9, P12

2a Finds a route, adds it to the system with every-
thing asked of him without issue. He is not sure
about tape, so he scrolls past that.

2b Realise he can edit a route. He adds tape, but is
unsure if toggling tape disables the hold colour.

3a Picks a route in Section B and opens his camera
instead of pressing the ”add beta button” on the
route.

P3

4a Rates and add a comment to a route without
any problems.

Comments Wishes there was a better explanation of what the search functionality
is as well as what it is capable of and not capable of. Finds a bug, where
two elements of each sections appear in the filter drop-down menu.

Table E.1: Descriptions and usability problems for tasks performed by test person 1.

168

Appendix E. Second Iteration: Usability Test (1st of December 2016)

Test person 2
Task Description Usability problems
2a/2b Test person was in the middle of screwing his

own route, so he was asked if he could possibly
add the same route in the system. He opens sec-
tion C, does not realise the + button is present
for him to add a new route. When he is told
about what he is doing incorrectly, he presses
the plus button. He adds everything and wishes
to add tape, but misses the toggle button. He
takes a picture of the route and adds that to it
without highlighting the holds. He is then told
it is possible to manipulate the picture he just
added, so he then finds the route, but tries to
zoom using the standard zoom gesture. He also
records video beta and adds that to the route
without trouble.

P4, P5, P6

Comments He wishes there was a share button so it is possible to share it with
people on instagram.

Table E.2: Descriptions and usability problems for tasks performed by test person 2.

Test person 3
Task Description Usability problems
1a /1c Scrolls to find the oldest route with blue grade

and makes a guess. Scrolls after that. Finds the
route without using filters, sorting and search-
ing. After being asked if he could search, he did
so, but inputs a Danish word instead of English.

P3, P7, P9

2a Finds a route on the wall and registers himself.
He puts in all the information except for section,
and gets the error three times before noticing it,
then corrects it by selecting the right section.

2b Finds the edit route page and adds tape to the
route. He thinks the circles are to mark the start
hold, but still marks them all on the picture he
added.

P8

3a Searches for ”black 10” and finds the button to
add a beta, after looking a bit for it.

P9, P12

4a Rates a route and adds a comment without trou-
ble.

Comments Wishes the Return key hides the keyboard. He does not think the small
icons on the Find-Route page is intuitive.

Table E.3: Descriptions and usability problems for tasks performed by test person 3.

169

Appendix E. Second Iteration: Usability Test (1st of December 2016)

Test person 4
Task Description Usability problems
1a Scrolls down and reads the date of each routes.

Realise afterwards he can sort, then does so.
1b Presses the search-bar and inputs ”Hans”, and

finds a route by him without any issues.
P9, P12

1c Searches for ”White 6”, and finds the right route
without any issues.

P9, P12

2a Presses the plus button, and is surprised that he
has to log in. He logs in and creates a new route.
Afraid to add a number to the route because it
does not yet have one.

P10

2b Sighs and thinks he has to create a new route to
add tape to the route he just created. Thinks
that it might be possible to edit it, which he
finds out, then adds tape.

Comments He is pleasantly surprised about the program. He wishes there was func-
tionality to tell the user what routes he has climbed, especially for the
more difficult routes.

Table E.4: Descriptions and usability problems for tasks performed by test person 4.

Test person 5
Task Description Usability problems
1a Finds the right route by sorting after oldest

routes.
1b Searches for ”Hans” and finds a route. P9, P12
1c Searches for ”White section b route number 6”.

Will not give any results.
P9, P12

2a Presses the plus button and registers. Adds the
system and happy about the picture functional-
ity of the system.

3a Adds beta to the route and finds out how to
upload it on his own.

4a He adds a rating, but is looking around on how
to upload that change, since he does not know
rating gets updated immediately.

P11

Comments

Table E.5: Descriptions and usability problems for tasks performed by test person 5.

170

Appendix F

Third Iteration: Usability Test (8th of
December 2016)

Opgave 1

Du kommer ud i klubben og hører at sektion
A snart skal ryddes. Før sektionen ryddes, vil
du gerne klatre den ældste rute i sektionen en
ekstra gang, inden det er for sent.

a) Find den ældste rute med grøn gradering
i sektion A

b) Find ud af hvem der har lavet ruten

Din ven Hans har lavet en rute med bl̊a grader-
ing i sektion A.

c) Brug søgefunktionen til at finde ruten

Opgave 2

Du har lige skruet en rute op p̊a væggen, og vil
gerne tilføje den til systemet.

a) Find en rute p̊a muren og tilføj den til
systemet. Tilføj kun nødvendig informa-
tion

b) Tilføj som note til ruten, at man skal
starte siddende

c) Tilføj et billede af ruten hvor du markerer
startgrebet

Du finder ud af, at du har lavet en fejl under
indtastningen af ruten, da du har glemt at der
er gult tape p̊a din rutes greb.

d) Ret fejlen i systemet, s̊a der er gult tape
p̊a ruten

Opgave 3

Du har klatret en rute, og er den første der har
gennemført ruten. Du vil gerne hjælpe andre
klatrere med at klatre ruten, ved at give dem
beta.

a) Tilføj beta samt en kommentar p̊a ruten,
du lavede tidligere

Opgave 4

De andre medlemmer i klubben har været vilde
med én bestemt rute, og det er derfor blevet den
rute med flest stjerner. Du beslutter dig for at
klatre ruten, og bestemmer dig ogs̊a for at give
den en bedømmelse.

a) Find ruten med flest stjerner

b) Vurdér ruten

Opgave 5

Klubben har f̊aet nye lokaler og har f̊aet plads
til en ekstra sektion. Du er blevet givet opgaven
at tilføje denne sektion til systemet.

For at løse denne opgave skal du være
administrator af systemet. Log ind med
oplysningerne:

Brugernavn: admin

Kode: 1234

171

Appendix F. Third Iteration: Usability Test (8th of December 2016)

a) Tilføj en ny sektion til systemet

Et medlem med brugernavnet TannerH er
blevet en del af bestyrelsen, og vil være med til
at administrere systemet.

b) Giv brugeren TannerH administratorret-
tigheder

Du vil gerne tilføje en ny farve som grebene
kan have i systemet.

c) Tilføj en ny grebsfarve til systemet

172

Appendix F. Third Iteration: Usability Test (8th of December 2016)

Task 1

You arrive to the club, and discover that sec-
tion A will soon be cleared. Before the section
is cleared, you want to climb the oldest route in
the section one extra time before it is too late.

a) Find the oldest route with a green grade
in section A

b) Find out who made the route

You friend Hans has created a route with a blue
grade in section A.

c) Use the search function to find the route

Task 2

You just added a route to the wall, and want
to add it to the system as well.

a) Find a route on the wall and add it to the
system. Add only the necessary informa-
tion

b) Add a note to the route stating that the
route should be started from a sitting po-
sition

c) Add an image of the route, and mark the
starting hold

You realise that you made a mistake when
adding the route, in that you forgot to add yel-
low tape to the holds.

d) Correct the error in the system, by adding
yellow tape to the route

Task 3

You have been climbing, and you are the first
to complete a route. You want to help other
climbers who have struggled with the route, by
giving them beta to the route.

a) Add beta to the route you created along
with a comment

Task 4

The other members of the club loved one route
in particular, and it has quickly become the top
rated route in the system. You decide to climb
the route as well and after doing so, feel that
should share your opinion.

a) Find the top rated route in the system

b) Rate the route

Task 5

The climbing club has moved to a different lo-
cation, and now has enough room for another
section. You have been given the task to add
the section to the system.

To solve this task, you need an administra-
tor account. Log in with the following informa-
tion:

Username: admin Password: 1234

a) Add the new section to the system

A member with the username TannerH
has joined the board of directors, and wants
to help administrating the system. To do that,
his account must have its privileges elevated to
administrator rights.

b) Give the user TannerH administrator
rights

You want to add a new colour for the holds
in the system.

c) Add a new hold colour to the system

173

Appendix F. Third Iteration: Usability Test (8th of December 2016)

Questionnaire

Name:

Age:

Climbing Experience:

Do you have a smartphone?

� Yes

� No

If yes, for how long have you had one?

S
tron

gly
d

isagree

S
tron

gly
agree

1 2 3 4 5 6

It was easy to use the system � � � � � �

If you have any comments or suggestions, please write them below.

174

Appendix F. Third Iteration: Usability Test (8th of December 2016)

Test person 1
Task Description Usability problems
1a Uses all filters to find the oldest route
1b No problems finding out who the creator of the

route was
1c Uses the filters to find the route. Uses the search

functionality later when asked if she could do it
in some other way

P12

2a She uses the burger menu to navigate to the add
route page. She has no problems inputting the
correct information

2b No issues adding a note
2c No issues adding an image, however, when she

attempts to add the circle around the starting
hold, she tries expanding the picture by using the
zoom gesture, even though the image is meant
to be pressed. She then pressed the edit button
and marked the starting hold

P1

2d No issues editing the route and adding the tape
3a She has issues finding where she can add beta.

She tried herself first but later when she got hint
about of what she was doing, was correct, she
could add a video beta without issues. She later
said she did not know that she had to add a video
beta. She also adds a comment to the video once
she has submitted the beta. She tries adding the
comment when she is submitting the video

P2, P3

4a Uses sort to find the highest rated route
4b Adds a rating to the route. She is not sure if the

rating gets updated immediately
P4

5a Logs out and logs in with the given username
and password, and adds a section

5b Makes TannerH an administrator but needs
feedback whenever the user is now an admin-
istrator or not

P10

5c Adds a new hold colour but did not change the
name

P5

Comments Knows what beta is, but she had trouble understanding what was meant
by adding beta during the given task

Table F.1: Descriptions and usability problems for tasks performed by test person 1.

175

Appendix F. Third Iteration: Usability Test (8th of December 2016)

Test person 2
Task Description Usability problems
1a Sorts by oldest and filters by green grade to find

the route
1b Knows who the route is created by, since the

author is mentioned
1c Searches by Hans, then restricts his search to

search for section a as well
2a Presses the + button at the bottom right, then

registers and inputs all the information for the
route

2b Presses the edit button and adds a note
2c Adds a beta and when he sees the image text,

he adds a circle for the starting hold
2d Presses the Has Tape on Route button, but do

not know how to add the yellow tape to the
route, so he adds a note with ”yellow tape”.
When he receives a hint about the changed
holds, he then realises what it means but finds
it distasteful

P6

3a Adds a comment to the route as beta, then asks
what is meant by beta in this context, and adds
a video beta without issue

4a Sorts by adding and finds the route
4b Adds his own rating to the route
5a Logs out and logs in with the given username

and password, and adds a section
5b Sees TannerH already has administrator rights,

then makes himself an admin
5c Adds a hold and changes its name
Comments Tape should be added next to the hold, instead of on it. Tape was

difficult to see

Table F.2: Descriptions and usability problems for tasks performed by test person 2.

176

Appendix F. Third Iteration: Usability Test (8th of December 2016)

Test person 3
Task Description Usability problems
1a Finds the route quickly and without issue
1b Sees who the author is
1c Filters then searches ”Blue Hans A” and finds

the route
2a Tries adding a new route, then gets greeted by

the login screen. Says he does not have a user-
name so tries logging in as default, but since
there is no default user, he creates a new user
and adds a route

2b Presses the edit button and adds a note
2c Adds an image to the route and adds the starting

hold to the image
2d Edits the route and adds yellow tape
3a Tries finding how to add a beta, then opens the

navigation bar, and tries swiping it away, which
does nothing. Adds a comment as beta, then
adds a video beta

P7

4a Sorts by rating and finds the highest rated route
4b Adds his own rating to the route
5a Logs out and logs in with the given username

and password, and adds a section
5b Changes the rights of TannerH
5c Adds a new hold colour and presses save, but

realise he forgot adding a name to it, so edits
the name. However since he already pressed the
save button, it hold colour was already getting
uploaded, so the name change did not go through

P2, P5

Comments Support for QR-codes on walls. Keywords or tags on routes.

Table F.3: Descriptions and usability problems for tasks performed by test person 3.

177

Appendix F. Third Iteration: Usability Test (8th of December 2016)

Test person 4
Task Description Usability problems
1a Needs to get an overview of the system, so it

takes a bit of time for him to find out he can
filter, then finds the route

1b Reads the author name
1c Searches for ”Hans” and finds the route. Then

restricts his searching once asked if he can do so.
He has troubles restricting his search since he
thinks it is in Danish, so searches for ”Sektion”
rather than ”Section”, but realise his mistake

P12

2a Registers without issue, but has trouble reading
the number located on the brick on the wall. He
adds the route without encountering any other
problems

2b No problems adding a note to the route
2c Adds an image and selects the starting hold
2d Has trouble finding where he can select a tape,

but after a bit of help, he sees the ”Has Tape”
button, says it makes sense and then adds a yel-
low tape to the route

P6

3a Adds a comment beta, but not a video. When
asked if he could do so, he does it without prob-
lems

4a Sorts by rating and finds the top-rated route
4b Adds his own rating to the route
5a Logs out and logs in with the given username

and password, and adds a section. He is not
sure if the section has been added, but believes
it has

5b Gives administration rights to TannerH
5c Adds a new hold colour, but with the default

name
P5

Comments He likes it is possible to rate routes, and thinks it is very nice that it is
possible to use the application at home

Table F.4: Descriptions and usability problems for tasks performed by test person 4.

178

Appendix F. Third Iteration: Usability Test (8th of December 2016)

Test person 5
Task Description Usability problems
1a Filters, finds the route and presses the route
1b Finds the route author, then goes back and finds

that the filters and sort options has been reset,
which he finds irritating

P8

1c When searching, he finds that the search resets
the filters, but manages to find the requested
route

2a Adds a route with the necessary information
2b Adds a comment instead of a note, but when

hinted at that, he realise his mistake, then edits
the route and adds a note and proceeds to delete
the comment he created by mistake

P9

2c Adds an image and selects the starting hold
2d Edits the route and adds yellow tape
3a Adds a comment beta, and when asked if he

could add a video beta, he did so without issues
4a Sorts by rating and finds the top rated route
4b Adds his own rating but is not sure if the rating

has been submitted
P4

5a Logs out and logs in then gets to the admin panel
by using the browser’s back button. Adds a long
name to the route which causes the text to exit
the boundaries of the section-name box. He then
tries deleting it, but nothing happens, so he re-
names the section name

5b Changes the rights to TannerH. Needs search
functionality to find the member he is looking
for. After changing the rights, he needs some
feedback to know whenever TannerH’s rights has
been changed or not

P10

5c Adds a new hold colour and gives it a new name P11
Comments Wishes the filters and sort order did not change to default when searching

or leaving the page. Also wishes it was possible to search for a member
at the admin panel

Table F.5: Descriptions and usability problems for tasks performed by test person 5.

179

180

Appendix G. Client Service Test Result

Appendix G

Client Service Test Result

Figure G.1: Shows test result for the client service component.

181

Appendix H

Additional Classes

ActiveActive

Section cleared

Route commented

Comment removed

Route removed

Section removed

(a) Behaviour for Comment class.

ActiveActive

Section cleared

Beta given

Beta removed

Route removed

Section removed

(b) Behaviour for Beta class.

ActiveActive

Hold added

Section cleared

Hold removed

Route removed

Section removed

(c) Behaviour for Hold class.

Figure H.1: Similar behaviour for several classes.

182

Appendix H. Additional Classes

Waiting For Route InformationWaiting For Route Information

Open edit route page

Select section

Select grade Select colour of holds

Select colour of tape

Enter route numberSaveCancel

Figure H.2: The statechart diagram for “edit route” shows the procedural pattern of the use
case.

183

	Introduction
	Methodology
	Software Development Methods
	Interviewing

	System Choice
	First Interview with Aalborg Climbing Club
	PACT Analysis
	Requirements
	Problem Statement
	Defining the New System

	Problem-domain Analysis
	Classes Activity
	Structure Activity
	Behaviour Activity

	Application-domain Analysis
	Actors and Use Cases
	Functions

	Architectural Design
	Criteria
	Technical Platform
	System Architecture
	Connecting Components

	User Interface Design
	Prototyping
	Page Overview
	Design Principles and Guidelines
	Using Design Guidelines

	Implementation
	Server-side
	Client-side

	Testing
	Purpose of Testing
	Unit Testing Frameworks
	Controller Test
	Client Service Tests
	View Model Unit Tests

	Usability Evaluation
	Usability
	First Usability Test
	Second Usability Test
	Third Usability Test

	Discussion
	General concerns
	Fulfilment of Requirements
	Choice of Software Development Method

	Conclusion
	Future Development
	Using the System Outside of AKK
	Improving the System for AKK

	Bibliography
	Appendices
	First Iteration: Preparations for Semi-structured Interview
	First Iteration: Interview Transcriptions (29th of September 2016)
	First Iteration: Notes From Second Interview With Paper Prototype (25th of October, 2016)
	First Iteration: Usability Test (9th of November 2016)
	Second Iteration: Usability Test (1st of December 2016)
	Third Iteration: Usability Test (8th of December 2016)
	Client Service Test Result
	Additional Classes

