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Abstract:

The focus of this project is to design, formalise,
implement, and test a programming language,
named Tang, with the purpose of programming
an Arduino. The language should allow the
programmers to control hardware directly in a
readable way. To do so, language design crite-
ria and language features are prioritised in re-
gards to the target group and time limitation
of the project. To describe the syntactical rules
of Tang, regular expressions and a context free
grammar were used. The semantic meaning of
the language has been defined using structural
operational semantics and a type system.
For the development of Tang, a compiler gener-
ator was created with the purpose of allowing
dynamic changes in the design of Tang, without
having to manually update the compiler each
time. The parser, alongside the other compiler
phases, are individually and collectively tested
and Tang is also evaluated by two computer sci-
ence students. The result of the project is an
imperative language that allows programmers,
new to embedded programming, to write pro-
grams for the Arduino. This is done by using
the features of Tang to abstract over and control
hardware components without having to learn
complex operations like bit-wise operators.
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Preface

This project has been produced by the Software group sw402f17 consisting of six members attending
Aalborg University. The project is a fourth semester project spanning the time from February to
May 2017. In addition to this report, the code from this project can be found in the electronic
appendix which is uploaded alongside the report.
We would like to thank Lone Leth Thomsen for her consultations and supervision of the project.

Reading Guide

Unless otherwise stated, the illustrations and figures used in this report have been made by the
group sw402f17. In some of the code listings shown in the report, only the essential parts have been
included. Removed sections of the code have been replaced by an ellipsis [. . . ]. For citation, we will
be using a number system where citation numbers appear inside brackets where the number is a
reference to the sources in the bibliography. In the bibliography, sources have the following format:
author, title, language, URL or ISBN as well as an optional date of when the URL/book was written
or edited. An example is [1, p. 100] which is a reference to the book Crafting a Compiler by Fisher
et al. page 100.

Abbreviations
Listed below are abbreviations used in the project along with their meaning.

• AST = Abstract Syntax Tree

• CST = Concrete Syntax Tree

• GPIO = General Purpose Input Output

• CFG = Context Free Grammar

• BNF = Backus-Naur Form

• IDE = Integrated Development Environment

• IR = Intermediate Representation

• kb = kilobit

• kB = kilobyte

• MCU = MicroController Unit

• RAM = Random Access Memory

• PCB = Printed Circuit Board

• PWM = Pulse Width Modulation

• I/O = Input Output

• MIPS = Computing speed (Million Instructions Per Second)

• MHz = Mega Hertz

• LED = Light Emitting Diode
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• VM = Virtual Machine

• JVM = Java Virtual Machine

• ADC = Analogue to Digital Converter

• DDR = Data Direction Register
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Chapter 1

Introduction

Programming languages are the means by which software developers write programs. There exist a
wide range of them, ranging from high-level languages such as C# and Java, to low-level languages
like machine code.
In this project, we will develop a programming language according to the project proposal in [2]
which suggests developing a new programming language for the Arduino. The reason for this choice
is that the project group is familiar with writing programs for the Arduino platform, and through
this experience, members of the group have experienced problems understanding concepts such as
bit-shifting and pointers.

We therefore establish the following preliminary problem for creating a new language for Arduino:

How can a programming language for Arduino be developed for programmers, who have
no previous experience with embedded programming?

The programming language developed in this project will be referred to as Tang. According to the
study-curriculum, seen in [3], we will, in addition to creating a language, also implement either an
interpreter or compiler for Tang. Until we choose between using an interpreter or compiler, we will
refer to interpreters and compilers by the common word translator.

The target group in this project is programmers with no previous experience in embedded pro-
gramming. To be able to make choices in relation to this target group, we state the following that
defines our target group. Programmers who . . .

• know about basic arithmetical operations, primitive types, variables, control structures, classes,
loops, and functions and have experience using them.

• have little or no experience using bit-wise operators (left/right shift, not, or, xor, and).

• do not have any previous experience with development boards like Arduino.

In order to develop the Tang programming language for our intended target group, we will, in chap-
ter 2, describe the methodology used throughout the project including the constraints, development
method, and test plan for this project.
In chapter 3, we will describe the Arduino platform and look at issues regarding different program-
ming languages for the Arduino platform.
The analysis conducted in chapter 3 will be used along with the study curriculum to establish the
problem statement in chapter 4.
In chapter 5, the theory necessary for understanding the development of Tang will be described
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Chapter 1. Introduction

which includes theory on the following topics: programming languages, paradigms, syntax, seman-
tics, translators, parsing techniques, and the visitor pattern.
After the description of these topics, we will begin to design Tang in chapter 6 which includes
prioritisation of language evaluation criteria and choice of paradigm for Tang. Furthermore, we
will in this chapter choose the language features that are included in Tang and how each of these
language features can be written in Tang.
As a final part of the design chapter we will, in section 6.7.1, make the choice of translator used to
develop Tang.
Chapter 7 will give a formal description of the syntax and semantics of Tang which includes a
description of the tokens, grammar, operational semantics, and type system of Tang.
After having described the language specifications for Tang, we will, in chapter 8, describe the
implementation of Tang including a discussion of different approaches for implementing Tang.
Chapter 8 proceeds by presenting the different parts of the implementation of Tang. We will then
conduct different tests for Tang for evaluation purposes in chapter 9 by using the test plan we
established in section 2.6. Finally, we will discuss and conclude the development of Tang in chapter
10 and 11, respectively. The conclusion will be drawn based on the problem statement in relation
to the design and implementation of the programming language, Tang.

2



Chapter 2

Methodology

The purpose of this chapter is to describe, discuss, and choose the development methodology and
test plan used throughout this project based on the project conditions. To choose the development
method we describe methodologies ranging from predictive to adaptive methodologies which are
the waterfall, iterative-waterfall, and iterative method.

2.1 Project Conditions

The goal of this project is to design, formalise, and implement a programming language. The
workload of the project is 15 ECTS for each group member. Furthermore, the project group has
not previously developed a programming language and must therefore in relation to the development
methodology take this into account.

2.2 Waterfall

In the waterfall method all preceding phases are completed before the next phase is begun. This
ensures a complete understanding before further development is done. Generally, phases are not
revisited once done, but there can be deviations from this rule, see section 2.3.

Documentation and analysis are in focus in the waterfall method, where the supporting argu-
ment is, that problems found earlier in a large project are far less costly in terms of both time and
money, compared to finding the problem at a later stage. This is one of the reasons why a significant
amount of the development period is spent on analysing the problem before coding begins [4].

2.3 Iterative Waterfall

It can be beneficial to adapt any methodology to the specific project in question [5]. Specifically,
this can be done by introducing iterative elements into the waterfall approach, so it is possible to
change earlier phases, based on the knowledge gained in the later phases [4]. This is called the
iterative waterfall model, and is well suited for teams with less experience on the given subject
[6]. In most projects which rely on the waterfall method, some deviations are made from the pure
waterfall phases described as “In practice, these stages overlap and feed information to each other.”
[7]. This means that the waterfall approach used in practice is in most projects similar to the
iterative waterfall model. The iterative waterfall model is visualised in figure 2.1.

3



Chapter 2. Methodology 2.4. Iterative

Figure 2.1: Iterative Waterfall Phases [7]

2.4 Iterative

The iterative approach to software development is characterised by having multiple repetitions of
the development process. The product is reevaluated at the end of each iteration, and all the in-
dividual development steps can be revisited throughout the development. By starting the actual
coding phase as early as possible, it leaves room for change at a later stage, which may require
more resources when using a more traditional method [5].

With the lack of documentation needed in an iterative method, compared to the waterfall method
in section 2.2, an iterative approach is well-suited for projects, where getting the product developed
fast is important [8]. In smaller teams, there is less need for structure and well-documented phases.
Therefore, the iterative model suits these teams well. The iterative method also suits teams with a
more ambiguous problem, where vast amounts of documentation is not an option [8].

2.5 Discussion

As the group does not have any experience with design and implementation of a programming
language and the development of a compiler in relation to the programming language, it is difficult
to organise and know which phases are more important and should have more time allocated, and
which are less important. Therefore, the waterfall method is not ideal for this project, as our lack
of experience impedes planning ahead.
A more suitable way of planning is to follow the courses spanning most of the semester. This
enables us to learn about a specific subject and thereafter implement it in our own project. It
also helps us organise our schedule. However, as the courses span most of the semester, using the
iterative development method would constrain us to making the first iteration last until the courses
are finished.
Therefore, we choose the iterative waterfall method as the development method for this project.
The iterative waterfall method fits our project as we do not need to follow a strict plan, it aids a
project like ours, where the next phase can be somewhat unknown to the group, and it makes us
able to iterate through earlier phases to revise them once we obtain new knowledge.
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Chapter 2. Methodology 2.6. Test Plan

2.6 Test Plan

In this section, we define the test plan used in this project for testing Tang. The test plan consists
of four types of tests: unit tests, integration tests, verification tests, and language evaluation tests.
The goal of the test plan is to document the testing approach used throughout this project to test
programming languages.

Unit Test
To ensure that the code written for the implementation of Tang works as intended, we will be
conducting unit tests on the written code across all the different phases of the translator. The
purpose of unit tests is to test small units of the program such as classes and methods. The focus
of the unit tests will thus be to evaluate the different units of the compiler such as the lexer. If the
tests do not comply with the expected results, informative and precise exceptions should be cast.

Integration Test
In the second phase of testing, we combine the modules of the translator to see if they work
together by conducting integration tests. To do this programs are written in Tang and translated.
The translation is then tested by writing tests that checks if the result of the translation is as
expected.

Verification Test
The third phase of testing is the verification test where we test if the program written in Tang
is able to run as intended on an Arduino and is meeting the requirements set by the group. An
example of such a test is writing a program in Tang that makes an LED blink, and then testing if
we can translate this program, run it on the Arduino, and observe the LED is blinking.

Language Evaluation
In the language evaluation test we will compare Tang to the following five different languages for
the Arduino platform: the Arduino language, AVR C, Java, JavaScript, and AVR Assembler. To
evaluate the languages, we will implement a blink program in each language where an Arduino is
programmed to make an LED blink with a given time interval as described in [9]. We will evaluate
the languages in accordance to four language evaluation criteria: writability, readability, reliability,
and cost, which are further elaborated on in section 5.1.1.

For a general evaluation of the Tang language, we will perform a user test based on the overall
overall steps in the Discount Method for Programming Language Evaluation [10]. We will not use
it for the iterative evaluation purposes it was designed for. The primary focus of this test is to
evaluate if the target group can understand programs written in Tang, and the secondary purpose
is to evaluate how intuitively our target group can write programs in Tang.

The Discount Method [10] specifies steps to evaluate a programming language. The steps used
for language evaluation are briefly defined below:

• Create tasks - create language specific problems for the test users to solve.

• Create a sample sheet - create a cheat sheet with code examples etc. to help the test users
with e.g. the syntax of the language.

• Estimate the task duration - estimate by solving the tasks yourself.
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Chapter 2. Methodology 2.6. Test Plan

• Prepare setup - choose the setup relevant for your test. Recording the test will help save
data.

• Gather participants - the ideal number of participants is five.

• Start the experiment - explain to the test person that it is the language being tested and
not him.

• Keep the participants talking - making the participants think out loud can be helpful.

• Interview the participant - after the experiment is conducted, ask the participant for
his/her thoughts. Optionally, questions could be prepared beforehand.

• Analyse data - analyse the data collected during the test, this could e.g. be done by cate-
gorising problems based on their importance.
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Chapter 3

Problem Analysis

In this chapter, we describe and analyse Arduino hardware and its constraints. In relation to this we
analyse how an Arduino board can be programmed to control a LED in five different programming
languages. From this analysis we discuss problems of the tested programming languages and derive
which problems we will address in this project.

3.1 Arduino

The Arduino is described as: “[. . . ] an open-source electronics platform [. . . ]” [11] that includes
PCB designs and firmware development tools like an IDE based on the processing IDE[12] and a
bootloader which makes programming the Arduino possible without specialised tools.
In this project, we choose to focus on the Arduino Uno and Arduino Nano boards because these
development boards are available to us and because these are categorised as entry level boards
described as: “[. . . ] easy to use and ready to power your first creative projects.” [13]. This makes
these boards suited for beginners like the target group in this project as described in section 1.
Another argument for choosing them, is they both use the ATmega328P which means code will be
compatible between them as described in section 3.1.1.

3.1.1 Hardware Platform
In this section, we introduce the hardware associated with the Arduino and some of the similar
alternatives to some of the components in the Arduino.

Microcontrollers

The Arduino is a development board for the ATmega328P microcontroller. The Arduino is there-
fore different from the typical microprocessor in most modern PCs. In this section we will discuss
the pros and cons and differences of each technology.

A microcontroller unit (MCU), or microcontroller for short, is a single chip on which all the basic
components a computer system need reside. These basic components are permanent storage on
which it stores program code and constants, processing units that evaluate instructions, RAM, and
I/O interfaces in the form of physical pins with different functions. Though it has some limitations,
microcontrollers are typically less expensive and smaller than a processor in modern computers.
The offical Arduino Uno and Nano can be bought for 20-22 EUR [14] [15]. Unofficial boards re-
sembling the official, but for a fraction of the price exist [16], even though it is possible to buy the
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ATmega328 chip by itself relatively cheap [17].

Microprocessor Units (MPU) are different in several regards. A microcontroller will have flash stor-
age on the chip to store the application firmware needed to run the chip whereas a microprocessor,
like the Intel or AMD processors in modern PCs, need external data storage like a hard-drive which
is comparably slow and therefore it is necessary to load program code and data into faster RAM
storage [18]. Microcontrollers also include other systems-on-chip like internal RAM and input/out-
put, which a microprocessor in general does not. In most computers these tasks are handled by the
motherboard and connected components [19]. With that said, a microcontroller is limited to its
flash storage and memory, where a microprocessor can have these expanded depending on which
components are connected to it [18].

Pin

Pins are the physical connection between a microcontroller like the Arduino and external devices.
Each pin has one or more functions like power input and ground pins through which the microcon-
troller receives the power necessary to operate. Other pins can be configured through I/O registers
to detect a change in voltage and trigger an interrupt function in software, or generate PWM signals
that can control the speed of motors or intensity of light. A common type of pin is a GPIO pin
which can either be controlled to output a high or low voltage or be configured as input to read a
digital value if a voltage is supplied by an external source.

I/O registers

Microcontrollers are controlled through software. The software controls the hardware by controlling
input and output functions of the microcontroller by reading input registers or writing to output
registers. A register has an address in memory and setting bits can control functions like setting
the voltage level of a pin either high (usually 3.3 or 5 Volts) or low (0 Volts). Registers might also,
configure which events should trigger an interrupt.

Interrupts

Interrupts are used to signal to the MCU when a certain event like a change in voltage on a pin
occurs. Interrupts could e.g. occur when a button is pressed or a hardware failure occurs. Interrupts
on the ATmega328P can be categorised as either internal and external [20].
Internal interrupts are triggered by an internal event in the chip, like a timer or the analogue
comparator [21].
External interrupts are triggered by external events like a rising edge on a pin.
Interrupts are triggered by a rising edge, falling edge or any edge and is called no matter what the
Arduino is doing when the interrupt is triggered, which also allows the Arduino to react quickly to
whatever caused the interrupt. A rising edge is when a signal goes from low to high, and falling
edge is the reverse, from high to low. Any edge is one of the two.

The ATmega328P MCU

The ATmega328P microcontroller (or ATmega328P) is used in both the Arduino Uno and Nano
development boards. Some of the overall specifications of the ATmega328P is shown in table 3.1.
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Property Value
Max-throughput 20 MIPS
Program storage 32 Kilo bytes
RAM 2 Kilo bytes
EEPROM storage 1 Kilo byte
I/O pins 23

Table 3.1: Select ATmega328p hardware specifications [20, p. 1-2].

Constraints

In this section we will get an understanding of the constraints that the programmer of an Arduino
is working under. We will do this by analysing the constraints of the ATmega328P.

Memory There are 32 kiloBytes of program memory available on the ATmega328P chip. As
applications grow larger you will eventually run out of program space. As such a compiler should
be efficient as any reduction of compiled code will allow the programmer more space on the chip
without having to buy a larger chip.

Speed The ATmega328P has a maximum throughput of 20 MIPS which, compared to modern
computers, is slow. Computers with large operating systems will, on the other hand, have to share
execution time among many processes, whereas with embedded development you will often be in
control of exactly what code is executing. When using an Arduino the ATmega328P is running
with a 16 MHz and therefore the maximum throughput is decreased to 16 MIPS.

Debugging When developing software for a microcontroller it can be difficult to debug run-
time errors because not all microcontrollers and corresponding development environments support
debugging. Therefore, it is difficult to step through the program to inspect values of different
variables at run-time to discover where in the source program an error has occurred. Simple
debugging of variable values can be accomplished on the Arduino platform by printing values
via USB to the connected computer using a statement like Serial.println(i). The problem with
this debugging strategy and break point based debugging is that inserting extra statements or
breaking at a statement in the program might not reflect the original behaviour of the running
program as communication with other connected components might be interrupted by the extra
print statements or breakpoints.

3.1.2 The Arduino Language
A program, or sketch as it is called in the Arduino environment, consists first and foremost of
two functions: void setup() and void loop() (see listing 3.1). setup is called first whereafter
loop is called repeatedly. The Arduino language is based on C++ [22], but the IDE makes some
small changes to the files before compiling with the avr-g++ compiler. Arduino generates function
prototypes for all functions in a file and also adds an include statement that includes Arduino.h,
see listing 3.2. Arduino.h defines constants like HIGH, and LOW. Arduino.h also adds prototypes
for functions like pinMode and digitalWrite which are defined in the Arduino standard libraries.
There are several libraries for the Arduino language which implement some of the interaction with
the hardware platform as well as interactions with external modules like motors and LCDs [23].
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1 int led = 13;
2
3 void setup() {
4 // initialize the digital pin as an output.
5 pinMode(led , OUTPUT);
6 }
7
8 // the loop routine runs over and over again forever:
9 void loop() {
10 digitalWrite(led , HIGH); // turn the LED on
11 delay (1000); // wait for a second
12 digitalWrite(led , LOW); // turn the LED off
13 delay (1000); // wait for a second
14 }

Listing 3.1: The Arduino example that blinks an LED

1 #line 1 "Blink.ino"
2 #include "Arduino.h"
3 void setup();
4 void loop();
5 #line 1
6 int led = 13;
7
8 void setup() {
9 // initialize the digital pin as an output.
10 pinMode(led , OUTPUT);
11 }
12
13 // the loop routine runs over and over again forever:
14 void loop() {
15 digitalWrite(led , HIGH); // turn the LED on
16 delay (1000); // wait for a second
17 digitalWrite(led , LOW); // turn the LED off
18 delay (1000); // wait for a second
19 }

Listing 3.2: An Arduino example that blinks an LED, after being processed by the arduino
"compiler". Notice that prototypes for each function is added on line 3 and 4, and Arduino.h
is also included on line 2.

3.1.3 Using Classes as Abstractions of Hardware Components
Because the Arduino language supports classes it is possible to create and use classes as abstractions
for hardware components. An example of this is shown in listing 3.3 which is an example for the
liquid crystal library from [24].
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1 [. . . ]
2 // include the library code:
3 #include <LiquidCrystal.h>
4
5 // initialize the library with the numbers of the interface pins
6 LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
7
8 void setup() {
9 // set up the LCD’s number of columns and rows:
10 lcd.begin(16, 2);
11 // Print a message to the LCD.
12 lcd.print("hello , world!");
13 }
14
15 void loop() {
16 // set the cursor to column 0, line 1
17 // (note: line 1 is the second row , since counting begins with 0):
18 lcd.setCursor(0, 1);
19 // print the number of seconds since reset:
20 lcd.print(millis () / 1000);
21 }

Listing 3.3: A Hello World! example for the liquid crystal library [24].

Using an object oriented approach as in listing 3.3 makes it possible for beginners to control hard-
ware components without knowing the underlying implementation of the interaction with these
components. In listing 3.3 this works by initialising an instance of the class in line 12 and use
instance methods of this class to perform different actions on the LCD. Line 6 demonstrates a
difficulty when using a constructor without named parameters to describe the mapping between
the Arduino and the LCD. The pin numbers passed to the constructor must be in the correct order
and correspond to the physical connections. To help with this, the example provided by Arduino
comes with a drawing showing how to connect the Arduino with the LCD [24].

3.2 Alternative Programming Languages for Arduino

Besides the official Arduino programming language described in 3.1.2, there are alternative pro-
gramming languages that can be used as source language for Arduino. In this section, we test and
analyse how the languages: AVR assembler, AVR C, Java, and JavaScript, at different levels of ab-
straction, support interaction with the Arduino hardware platform. To compare these languages, we
implement a simple LED blinking program for each language, like we did for the Arduino language
in section 3.1.2.

3.2.1 Low Level Programming in AVR Assembler
From section 3.1, we know that Arduino is based on the ATmega328P MCU. The ATmega328P
is part of the AVR family MCUs [20] and we can therefore develop software for Arduino, using
the AVR assembler language. The Assembler languages offer words called mnemonics for machine
code instructions to make it easier for the programmer to remember instructions at a low level of
abstraction [25]. Most mnemonics abbreviate the action performed by the instruction like brne for
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branch if not equal and sbci for subtract immediate with carry. There are about 120 AVR assembler
instructions in the instruction set [26].

Based on the AVR assembler instruction set in [26], we can implement the blink example program
in AVR assembler as shown in listing 3.4. The shown AVR assembler program in 3.4 is inspired
by the disassemble in appendix A. The disassemble in appendix A is based on the binary machine
code for the blink example program in C, shown in listing 3.8.

1 .global main
2 main:
3 sbi 0x04 , 5 ; set led pin as output
4 loop:
5 sbi 0x05 , 5 ; turn led on
6 call delay ; wait 1 second
7 cbi 0x05 , 5 ; turn led off
8 call delay ; wait 1 second
9 rjmp loop ; loop again
10 delay:
11 ldi r18 , 0x00 ; initialise counter to 3.2M
12 ldi r19 , 0xD4
13 ldi r20 , 0x30
14 subi r18 , 0x01 ; decrement counter by 1
15 sbci r19 , 0x00
16 sbci r20 , 0x00
17 brne .-8 ; repeat decrement until counter == 0
18 ret

Listing 3.4: Shows the blink example program for Arduino in AVR assembler. Compiled flash
memory usage: 164 bytes.

I/O Registers and Digital Output

Analysing the blink example written in assembly yields facts about how to control the hardware
pins at a low level of abstraction. At line 3 in listing 3.4, we use the sbi instruction to set the bit at
index 5 to 1 in the DDRB register at address 4. The DDRB register is a data direction register where
the bit at index 5 determines if the pin PB5 acts as input or output [27, p. 91]. We want to control
pin PB5 as it is connected to the LED on the Arduino Nano [28] [29]. In this example, we want pin
PB5 to act as output by setting the bit value to 1. The next instruction at line 5 we use sbi again
to set the bit at index 5 in the PORTB data register at address 5 to turn on the LED. The value of
the bit at index 5 in the PORTB data register determines the output voltage of pin PB5 [27, p. 82
and 91]. If the bit is set to 1, the output voltage is 5. If the bit is set to 0 then there is no output
voltage. We use PORTB data register again in line 7 to clear the bit to turn off the LED using the
cbi instruction.

Loop and Delay

Inspired by the disassembly in appendix A, we create the loop construct by using the rjmp instruc-
tion at line 9, in listing 3.4, to repeat turning the LED on and off by doing a relative jump to
the second instruction at line 5. To implement the 1 second delay between the LED blinking we
refactor the delay implementation in appendix A by creating a subroutine called delay shown at
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lines 10-18. From section 3.1, we know that the Arduino executes 16 million cycles per second and
we can therefore construct a delay of 1 second, by executing instructions with a total of 16 million
cycles. We do this by storing a counting value starting at 3.2 million using the three registers
r18, r19 and r20. At line 14-17, we then repeatedly decrement the counting value by 1 while the
counting value does not equal 0. This means that lines 14-17 are executed 3.2 million times. From
[26], we know that the subtract instructions in line 14-16 execute in 1 clock cycle each and the
branch instruction in line 17 executes in two clock cycles when the delay counter is greater than 0.
Therefore, the total clock cycles of execution at lines 14-17 after entering the delay subroutine are
the following.

ncycles = 3.2 ∗ 106 ∗ 5
clock cycles = 16 ∗ 106 clock cycles

From this we can calculate and show the that the delay is 1 second.

tdelay =
ncycles
fcycles

=
16 ∗ 106 clock cycles

16 ∗ 106 clock cycles

1 second

= 1 second

In these calculations, we do not include clock cycles for instructions at lines 11-13 as well as the
call and ret instructions for the delay subroutine, because the number of clock cycles in these
instructions are negligible in this example as they are only executed once per delay call.

Compiling and Uploading the Blink Example Program

Saving the blink example program in listing 3.4 as blink.s, enables us to use the avr-gcc compiler
to assemble the program with the command in listing 3.5.

1 avr -gcc -mmcu=atmega328p .\blink.s -o .\blink.out

Listing 3.5: Shows the command for assembling the blink example program for Arduino [30]

This generates a binary blink.out file including the binary machine code for the blink example. To
upload this program to the Arduino, we first create an ASCII encoded hex file using the command
as shown in listing 3.6.

1 avr -objcopy -O ihex -R .eeprom .\blink.out .\blink.hex

Listing 3.6: Shows the command for converting to hex file [31]

This hex file is then passed to AVRDUDE that writes the machine code to the Arduino via USB
communication with a command as shown in listing 3.7.

1 avrdude -C "C:\ Program Files
↪→ (x86)\Arduino\hardware\tools\avr/etc/avrdude.conf" -v
↪→ -patmega328p -carduino -PCOM3 -b115200 -D -Uflash:w:blink.hex:i

Listing 3.7: Shows the command for writing the hex file to the Arduino [32]
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Using AVR assembler as Source Language for Arduino

There are reasons to use AVR assembler as source language for Arduino. One reason is to use
assembler code to ensure which machine instructions are executed. An example of this is the im-
plementation of the 1 second delay in the blink example where we need to know exactly which
instructions are executed to wait 16 million clock cycles. A similar reason to use assembler is in
situations where a higher level language like C does not support the same executions as assembler
code [33]. A disadvantage of using AVR assembler code as the source language is that the pro-
grammer needs to remember mnemonics for the available assembler instructions to write and read
programs. Remembering 122 assembler instructions and the available operands can be a difficult
task. Another disadvantage is that AVR assembler instructions for the Arduino mainly support
arithmetical instructions add, subtract, and multiply on operands with 8 bits of precision except
the instructions adiw and sbiw, which can add or subtract a constant value from a pair of registers
representing a 16 bit integer [26]. Another limitation of AVR assembler is that it does not support
floating point number arithmetic [26]. To do arithmetical operations on larger values we can use
multiple registers and perform arithmetical operations with carry, like we do in the blink example
program at figure 3.4 line 14-16. In the next section we will see how these disadvantages can be
addressed using the C programming language.

3.2.2 The C Programming Language
The C programming language has several data types like char, short, int, and long, as well as
control structures like if, if-else, for, and while. These constructs, and the ability to create
arrays, structs, and functions enable the programmer to develop software at a more abstract level
than assembler. Listing 3.8 shows how the blink example program can be implemented in C using
AVR Libc libraries for AVR-GCC.

1 #define F_CPU 16000000L // define clock frequency
2 #include <avr/io.h>
3 #include <util/delay.h>
4
5 void main() {
6 DDRB |= 1<<PIN5; //set led pin as output
7 while (1) { //loop
8 PORTB |= 1<<PIN5; //turn led on
9 _delay_ms (1000); //wait 1 second
10 PORTB &= ~(1<<PIN5); //turn led off
11 _delay_ms (1000); //wait 1 second
12 }
13 }

Listing 3.8: Blink program in AVR C. Compiled flash memory usage: 176 bytes.

Libraries and Preprocessor Directives

In the first three lines of the blink example program in C, as seen in listing 3.8, we use what is called
preprocessor directives, which are identified by the octothorpe prefix. Preprocessor directives are
used by the C preprocessor to make text replacements before compilation of the program [34]. At
line 1, we use #define to create a symbolic constant for the clock frequency used in the util/delay.h
standard library that implements the _delay_ms function used in line 9 and 11. To interact with I/O
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registers, we include the avr/io.h standard library that defines the symbols DDRB, PORTB, and PIN5.
To understand what these symbols represent we can invoke the preprocessor with the following
command in listing 3.9.

1 avr -gcc -mmcu=atmega328p -E blink.c

Listing 3.9: Shows the command for preprocessing the blink example program in C [30]

Using the command in listing 3.9 we get the output shown in listing 3.10.

1 [. . . ]
2 void main() {
3 (*( volatile uint8_t *)((0x04) + 0x20)) |= 1<<5;
4 while (1) {
5 (*( volatile uint8_t *)((0x05) + 0x20)) |= 1<<5;
6 _delay_ms (1000);
7 (*( volatile uint8_t *)((0x05) + 0x20)) &= ~(1<<5);
8 _delay_ms (1000);
9 }
10 }

Listing 3.10: Shows the main function of the blink example program in C after preprocessing

Addressing I/O Registers In C

As shown in listing 3.10, the DDRB and PORTB symbols are replaced by dereferenced pointers to the
memory addresses 0x24 and 0x25 respectively. This is different from the addresses 0x04 and 0x05
used in the AVR assembler version of the blink example in listing 3.4. The reason for this can be
found in the data-sheet for the ATmega328P: "I/O Registers within the address range 0x00-0x1F
are directly bita-ccessible using the SBI and CBI instructions. [. . . ] When using the I/O specific
commands IN and OUT, the I/O addresses 0x00-0x3F must be used. When addressing I/O Registers
as data space using LD and ST instructions, 0x20 must be added to these addresses." [27, p. 21].
This means that the compiler needs to consider which address to use for the different I/O registers
and add the 0x20 offset depending on how the I/O registers are used.

Bitwise Operations In C

The preprocessed blink example in listing 3.10 reveals how to change the bit at index 5 in DDRB
and PORTB. To set the bit at index 5 we use the compound assignment | = as shown in line 3 and 5
with the expression 1 << 5 as right hand side. 1 << 5 is another way of writing literals 32, 0x20,
or 0b00100000, which are all evaluated to the integer represented in binary as all zeros except the
bit at index 5 which is 1. Listing 3.11 shows how binary or between an I/O register like PORTB and
1 << 5 sets the bit at index 5 in DDRB without changing other bits.
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1 1<<5: 00100000
2 PORTB: abcdefgh
3 PORTB | 1<<5: ab1defgh

Listing 3.11: Shows how the binary or (|) operation can set a single bit in a register where a, b, ...
, h represents the values of the 8th, 7th, ... , 1st bit in PORTB

To clear a bit in an I/O register we can use a combination of the left shift («), binary not (~) and
binary and (&) as shown in listing 3.12.

1 1<<5: 00100000
2 ~(1<<5): 11011111
3 PORTB: abcdefgh
4 PORTB & ~(1<<5): ab0defgh

Listing 3.12: Shows how the binary and (&) operation can clear a single bit in a register where a,
b, ... , h represents the values of the 8th, 7th, ... , 1st bit in PORTB

Even though the blink example in C shown in listing 3.8 uses multiple bitwise operations to modify
a bit in an I/O register, the machine code generated by avr-gcc might be a single set bit instruction
sbi or clear bit instruction cbi as shown in appendix A line 44 and 54.

Conditions and Expressions

If we look at the while statement in listing 3.8 line 7, we see that the condition for the while state-
ment is the expression ’1’. This is a valid condition because the conditions for iterative control
structures in C are expressions which are considered true if the value is not 0. If it is 0, it is consid-
ered false [35, p. 150]. This means that an expression like 5− 10 ∗ 42 used as a condition evaluates
to true because −415 6= 0. Because assignments in C are also expressions we can use assignments
as conditions for control structures. Listing 3.13 shows an example of an assignment condition for
an if statement in C.

1 void main(void) {
2 int a = 0;
3 if(a = 0) {
4 [. . . ]
5 }
6 }

Listing 3.13: Shows assignment as condition for if statement.

Listing 3.13 shows an example of a condition that might confuse some programmers. A programmer
might read the condition in line 3 intuitively as a equals 0 and because we initialised a to 0 in line
2 the programmer might think that the condition is true. But because the condition is actually an
assignment, and the value of an assignment is the value of the right hand side, which is 0, then the
condition is false.
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Using C as Source Language for Arduino

An advantage of using C as source language for Arduino instead of AVR assembler is that it supports
more data types and control structures and thereby enable the programmer to develop software at
a more abstract level while still maintaining the ability to control the hardware. A disadvantage of
using C for Arduino is that if you do not have any previous knowledge about bitwise operations on
hardware registers, it might be difficult to understand that line 10, in listing 3.8, turns off the LED
by clearing the bit at index 5 in the I/O register PORTB. Using three bitwise operations to clear a
single bit in a register seems complex, when it might be compiled down to a single cbi assembler
instruction, as shown in appendix A line 54.

3.2.3 Java
In the previous sections, we have analysed the imperative languages AVR assembler and C. In this
section we will now look at the object oriented programming language Java, which enables the
programmer to create more abstract code using classes. There are several projects that attempt
to make microcontrollers programmable with Java [36] [37] [38]. To test Java for Arduino we use
HaikuVM. HaikuVM is described as "[. . . ] a JAVA VM for micro controllers. It implements all
JAVA byte codes (without ’invokedynamic’)." [37]. Listing 3.14 shows the blink example for Arduino
which comes with the HaikuVM tools.

1 package processing.examples._01_Basics;
2
3 import static processing.hardware.arduino.cores.arduino.Arduino .*;
4 [. . . ]
5 public class Blink {
6 // The status LED of the ARDUINO will blink.
7
8 static byte ledPin = 13; // LED connected to digital

↪→ pin 13
9
10 public static void setup() {
11 pinMode(ledPin , OUTPUT); // sets the digital pin as

↪→ output
12 }
13
14 public static void loop() // run over and over again
15 {
16 digitalWrite(ledPin , HIGH); // sets the LED on
17 delay (1000); // waits for a second
18 digitalWrite(ledPin , LOW); // sets the LED off
19 delay (1000); // waits for a second
20 }
21 }

Listing 3.14: Shows the blink example program in Java the comes with HaikuVM [37]. Compiled
flash memory usage: 5794 bytes.

At line 3, we import a Java port of the Arduino.h library to be able to use functions like pinMode
and digitalWrite. The blink example in listing 3.14 uses a similar structure as the blink example
in the Arduino language, shown in listing 3.1. Both use the setup and loop functions.
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Classes and Threads

We will now show some of the capabilities that Java offers by creating a more object oriented version
of the blink example. Instead of using digitalWrite directly from the class Blink, we can instead
implement a new Led class as shown in appendix B, and use this class to implement the program
shown in listing 3.15.

1 [. . . ]
2 public class Blink {
3 static Led led;
4
5 public static void setup() {
6 Serial.begin (9600);
7 led = new Led (13);
8 led.blink (1000); //Start blinking thread with interval of 1

↪→ second
9 }
10
11 public static void loop() {
12 //Do other things while Led is blinking on a separate thread
13 Serial.println("Led is " + (led.isOn() ? "on" : "off"));
14 delay (1000);
15 }
16 }

Listing 3.15: Shows an extended blink example program in Java using the Led class in appendix
B. Compiled flash memory usage: 8760 bytes.

Because the blink method of the Led class is using a separate thread to turn the LED on and off,
as shown in appendix B, it is possible to execute other statements concurrently. In this example
we send messages about the LEDs current state to the connected PC while the LED is blinking. A
sample of the messages received from the Arduino is shown in figure 3.1.
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Figure 3.1: The figure shows the Arduino serial monitor that communicates with the program in
listing 3.15.

As shown in figure 3.1, the messages received from the Arduino are shifting between "Led is on"
and "Led is off". This is also expected because we insert a delay of 1000 milliseconds after each
Serial.println call, in line 13, which is equal to the interval we pass to the blink method in line
8. But from figure 3.1, we can also observe that there is an occurrence of two equal messages in
a row. This can occur if the execution time of each loop iteration, at line 11-15, is not equal to
the execution time of each loop iteration in the BlinkThread of the Led class, shown in appendix
B. Another reason could be that the execution is interleaved between the main thread and the
BlinkThread in such a manner, that the BlinkThread executes instructions, that both turn the led
on and off in between the time that two messages are send. This will result in two equal messages
being sent.

Using Java as Source Language for Arduino

An advantage of using an object oriented language like Java for Arduino, is that the programmer
is able to use classes as abstractions for a hardware components like we did with the Led class
in listing 3.15. Another advantage is that if the programmer needs to run code concurrently, it
is possible to use multi-threading. A disadvantage of using Java for Arduino with a JVM, like
HaikuVM, is the speed of execution. Based on a comparison by HaikuVM between Java and C,
using the calculation of numbers in the Fibonacci sequence, the following was concluded: "This
(specific) plain C program is 35 (or 41) times faster than the corresponding JAVA program running
with HaikuVM." [37]. Therefore it is worth to consider if fast execution speed is a requirement for
the project before choosing Java as source language for Arduino.

3.2.4 Interfacing with Higher Level Languages
In the previous sections, we have described languages that compile to a program that is running on
the Arduino. In this section, we will describe how to develop software for Arduino using high level
languages like JavaScript, C#, and Python by interfacing with an Arduino from a PC.

Interfacing with higher level languages works by having some firmware running on the Arduino,
like Firmata [39], which basically enslaves the Arduino and uses its input-output capabilities. This
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means that we can have a large and complex program running on a faster PC and only use the
Arduino for input and output. This also means that any language can be run if it can make calls
to the Firmata API [39].
In this sectionm JavaScript is used as an example of development software for Arduino in a dynamic
typed language. In the example, we use Johnny-five.IO [40], which works as an interface between
JavaScript and Firmata and also provides some libraries for the Arduino hardware platform.

1 var five = require("johnny -five");
2 var board = new five.Board();
3
4 board.on("ready", function () {
5 var led = new five.Led (13); // initialise led
6 led.blink (1000); // toggle led every 1 second
7 });

Listing 3.16: Shows the blink example program for interfacing with Arduino in JavaScript using
Johnny-Five

The JavaScript example starts by getting an instance of the Johnny-Five API. In line 2, It connects
the Arduino and we are ready to interface with it. In line 4, we define the "ready" function in the
Arduino, which works the same way as in the Arduino IDE, but still runs on the PC. We tell it to
initialise the LED on pin 13, and then we tell it to blink/toggle every 1000 ms.

3.2.5 Comparing Languages for Arduino
In the previous sections 3.2.1, 3.2.2, 3.2.3, and 3.2.4, we implemented and analysed programs
which turn the Arduino’s LED on and off with an interval of one second. From the analysis of
these programs we can now compare how AVR assembler, C, Java, and JavaScript can be used to
develop software for Arduino.

Level of Abstraction

A key difference between the tested languages is the level of abstraction. Starting at a low level
of abstraction, is the AVR assembler, where the machine instructions executed are known and
therefore we can do precise timing like in the implementation of the delay subroutine in listing 3.4.
Next is the C programming language, where we do not know exactly which machine instructions that
are executed, because it depends on how the compiler translates the different higher level constructs
into machine code. Even though C supports struct and union data types, it is not possible to use
the same object oriented abstractions, which can be achieved in Java and JavaScript, shown in
section 3.2.3 and 3.2.4.
Using an abstraction like the Led class in Java instead of bitwise operations on I/O registers in
C, makes development easier for the target group in this project, because they are familiar with
object-oriented programming but not bitwise operations on registers. Therefore, if we focus on
designing a new programming language for Arduino, it makes it possible for beginners to control
the hardware platform. It would be a solution to design an object-oriented language, like Java,
or the current Arduino language and just add standard libraries. These could include classes and
functions for different hardware components and hide operations on registers from the programmer.
Seen from an educational point of view, this approach introduces some problems. If the programmer
is only able to control the hardware at a high level of abstraction by using classes made by experts,
the programmer does not learn how to control the hardware at a concrete level i.e. doing operations
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on registers. Therefore, the programmer is challenged if he encounters a situation where classes or
libraries have not yet been implemented to fit his project.
To make it easier to understand how to control hardware at a concrete level, a solution could for
instance be to find a simpler way to change bits in a register, without the need to use two or three
bitwise operators like in C. In the AVR assembler and C blink programs we refer to the LED pin as
the bit at index 5 in DDRB and PORTB whereas in the Arduino and Java implementation we refer to
the more abstract physical label of the pin i.e. the number 13 which the on-board LED is connected
to. From a programmers perspective it is easier to use the pin number labelled on the Arduino
than bits in registers, because labelled pin numbers are directly visible to the programmer.

Memory Usage

Because the Arduino is constrained to 32 kB of programmable flash memory, we will now com-
pare the memory usage of programs in the tested languages. The JavaScript blink example is not
included because it is running on the PC and not directly on the Arduino. Table 3.2 shows the
flash memory usage for the blink program and the bare minimum programs in AVR assembler, C,
Arduino, and Java.

Language Blink program Bare minimum program
AVR Assembler 164 bytes 132 bytes
C 176 bytes 134 bytes
Arduino 928 bytes 444 bytes
Java 5794 bytes 4622 bytes

Table 3.2: Shows the flash memory usage for the blink program and the bare minimum program.
(see appendix M for how these numbers are obtained).

As shown in table 3.2, there are significant differences in flash memory usage of the blink program
depending on the source language. We have included the memory usage of the bare minimum
program i.e. a program without any statements and included libraries as a reference. The reason
that the bare minimum in AVR assembler and C uses 132 and 134 bytes when no assembler instruc-
tions or statements are compiled, is primarily that avr-gcc inserts an interrupt vector, as shown
in appendix A, to ensure that hardware interrupts are jumping to a valid instruction, even if an
interrupt function is not defined. The memory usage of the bare minimum program in Arduino
can be explained by listing 3.2, which shows how Arduino code is compiled to C++ code including
the Arduino.h library. Finally is the bare minimum program in Java which uses at least ten times
more memory than in the other languages. A reason for the relatively large memory usage, is that
the Java Virtual Machine HaikuVM is included.

Assuming that the memory usage of the bare minimum program is the offset for all other programs’
memory usage, we can subtract this offset from the memory usage of the blink program, to better
compare the specific memory usage for the blink program, as shown in table 3.3.
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Language Blink program
AVR assembler 32 bytes
C 42 bytes
Arduino 484 bytes
Java 1172 bytes

Table 3.3: shows the flash memory usage for the blink program minus the bare minimum program’s
memory usage in the languages: AVR assembler, C, Arduino, and Java.

Comparing the specific memory usage for the blink program, we see in 3.3 that the object-oriented
languages Arduino and Java both uses the more abstract representation of the led pin as the
number 13, but uses significantly more memory than the imperative languages AVR assembler and
C, which use registers and bitwise operations. Another observation is that the difference between
AVR assembler and C is relatively small compared to the difference between AVR assembler and
Arduino. Therefore choosing C as source language instead of AVR assembler may not have a
significant impact on the memory usage compared to using Arduino or Java.

3.3 Problem Considerations

Based on the analysis of the Arduino hardware platform and the languages for Arduino that have
been tested and analysed previously in this chapter, we now describe different considerations of
creating a new programming language for Arduino. From section 3.1.1, we know that some of the
major constraints in Arduino development is memory, execution speed, and debugging capabilities,
which are relevant to take into account.
Another consideration is the way the language interacts with the hardware. From section 3.2.1,
we know that, at hardware level, the hardware pins can be controlled e.g. by setting or clearing
bits in the I/O registers using the AVR instructions sbi (set bit) and cbi (clear bit). A new lan-
guage must decide how to represent low level instructions and at what abstraction level. In C,
one can represent instructions on I/O registers as bitwise operations on registers located at specific
memory addresses, whereas in the Arduino and Java example program, a more abstract function
digitalWrite is available to control pins referred by the number labelled beside the pin on the
Arduino board. When creating a new language for Arduino we must also consider how the pro-
grammer is able to use and implement abstractions of hardware like an LED or an LCD while still
considering the memory usage of programs written in the language in order to respect the memory
constraint of the Arduino.
In this project we want to make a programming language for programmers new to embedded pro-
gramming and for that reason we want programmers to understand how to interact with hardware
but without having to use unnecessary complex operations. The main focus of this project is there-
fore how we can make a programming language that allows interacting with hardware components
and how to represent these hardware interactions in the language. These considerations will form
the basis for a problem statement and for the design of a new language for Arduino.
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Chapter 4

Problem Statement

Based on the considerations of the problem, described in section 3.3, and the study curriculum for
this project, defined in [3, p. 26-27], we can now define the problem statement for this project. How
can a programming language for Arduino be developed for programmers with no previous experience
in embedded programming?

• How can the programmer control hardware components on an Arduino board?

• How can the programming language support abstractions of hardware components?

• How can syntax and semantics be defined for the programming language?

• How can a translator be implemented for the programming language to enable execution on
an Arduino?
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Chapter 5

Theory

The aim of this chapter is to explain the theory used throughout this project to make the Tang
programming language. The theory will cover some aspects of: the main four programming language
paradigms, syntax, semantics, compilers, interpreters, and the visitor pattern. The purpose of
covering these topics is to provide the reader with the theory needed for understanding the remainder
of this paper.

5.1 Programming Languages

In this section, we describe what a programming language is and explain four criteria for evaluating
a programming languages. This theory will be used in chapter 6 as a basis for discussing which
design criteria are most relevant for the design of the Tang programming language.

Generally speaking, a language consists of sentences, which are a series of symbols over an al-
phabet Σ [41, p. 136]. The syntax rules define which of these strings is part of the language [41, p.
136]. Consider a natural language like the English over the alphabet Σ = {a, b, c...z} thus we can
define the string, w, to be part of the English language if: {w ∈ Σ∗| w complies with English syn-
tax}. A programming language is "a technical language in which computer programs are written."
[42].

When evaluating a programming language, certain criteria may be considered. The following section
about language evaluation criteria will, based on [41], describe four language evaluation criterias
readability, writability, reliabity and cost.

5.1.1 Language Evaluation Criteria
This section about language evaluation criteria is based on the book Concepts of Programming
Languages by Robert W. Sebesta [41, ch. 1.3] and will, in accordance with this book, therefore
describe four different criteria: readability, writability, reliability, and cost. The theory in this
section will be used later in section 9.4 to evaluate Tang in comparison with other languages for
Arduino.

5.1.2 Readability
Readability is about “[. . . ] the ease with which programs can be read and understood.” [41, p. 31].
If readability is high, the maintainability of a program tends to be higher. For a programming
language to have readability it must have some of the following characteristics:
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Overall Simplicity If a certain programming language has a large number of basic constructs, it
can be hard to know all of its features. Readability problems may occur, when one programmer
writes a program using one subset of features in a programming language, and another programmer
who knows another subset has to read and understand that program.
Other characteristics that contribute to the readability of a program could be feature multiplicity,
i.e. being able to do some operation in multiple different ways.
Operator overloading, if used incorrectly or illogically can also cause problems when reading a pro-
gram.

Orthogonality “Orthogonality in a programming language means that a relatively small set of
primitive constructs can be combined in a relatively small number of ways to build the control and
data structures of the language.” [41, p. 33]. In addition to this, it should be possible to combine
every primitive type in a valid way. Lack of orthogonality leads to exceptions of language rules [41,
p. 33]. However, too much orthogonality can also lead to unnecessary complexity, since it allows a
large number of combinations.

Data Types Having sufficient data types for describing the variables in a suitable manner also
contributes to the readability of a computer program. An example of a lack of sufficient data types
could be when having to describe a Boolean type with an integer, where 0 is false and 1 is true.
The statement isActive = 1 is not as meaningful as isActive = true.

Syntax Design Syntactic design can also affect the readability of a programming language. Fol-
lowingly described are syntactic design choices that influence readability.

• Special words. Having a long list of nested special words, e.g. while, if, and for may cause
readability problems, when the statements are ’closed’, if they are closed in the same way,
e.g. by ’end’ or ’}’. A solution for this could be by using ’end if’, ’end while’ etc.

• Having statements somewhat describe their meaning in their name can also be helpful in
regards of the readability of a program. When two language constructs are indistinguishable
from each other, it may cause problems understanding them.

5.1.3 Writability
Writability is a measure of how easily a programming language can be used by a computer program-
mer to write programs. Readability and writability go hand in hand for many of the characteristics,
since, when writing a program, you often go back and re-read some of the earlier parts of the pro-
gram [41, p. 37].

Simplicity and Orthogonality As explained earlier, it can be a problem if a certain program-
ming language has a large amount of constructs, since most programmers will only learn a subset
of them, if there are too many. The right amount of orthogonality will help programmers solve
complex problems only knowing a smaller set of constructs. Too much orthogonality, i.e. being able
to combine a large number of primitive constructs, can lead to undiscoverable errors.

Expressivity Expressivity “[. . . ] means that a language has relatively convenient, rather than cum-
bersome, ways of specifying computations.” [41, p. 37]. This could e.g. be in C, where count + +
is more convenient than count = count+ 1.
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5.1.4 Reliability
“program is said to be reliable if it performs to its specifications under all conditions.” [41, p. 37].
Related to the reliability of a language is: type checking, exception handling, and aliasing.
A reliable program language has some kind of type checking, either by the compiler or at run-time.
Failure to type check has often been the cause of program errors as it was with an earlier version
of C where parameters given to a function was not checked whether it corresponded to the formal
parameters of the function or not [41, p. 38].
Another aspect of the reliability of a programming language is the ability to catch and handle
exceptions at run-time. This phenomenon is called exception-handling [41, p. 38]. In some pro-
gramming languages it is not possible or impractical to detect run-time errors which means that
the particular program will be terminated and control will be given back to the operating system
in case of a run-time error that could have been fixed by the program [41, p. 622]. Exceptions
allow the programmer to catch and handle these exceptions and thus not terminate the program
which increases the reliability of a programming language because it, at run-time, can be ensured
that the program performs to its specifications.
A programming language that supports aliasing is a language that allows two or more different
variables to point to the same place in memory [41, p. 38]. Many languages have support for
pointers which allows the programmer to have variables that refer to the same place in memory. In
languages that support aliasing the programmer must be aware of side effects, e.g. changing a value
in memory that is pointed to by multiple variables. Aliasing is considered dangerous and affects
the reliability of a programming language if not used carefully.

5.1.5 Cost
Adding to the evaluation of a language is the total cost of using a language which according to [41,
p. 39] is measured according to the following characteristics:

• Cost of training programmers to use the language (Readability)

• Cost of writing programs in the language (Writability)

• Cost of compiling programs in the language (Performance of compiler)

• Cost of executing programs written in the language (Execution speed)

• Cost of the language implementation system (Language implementation system)

• Cost of poor reliability (Reliability)

• Cost of maintaining a program written in the language (Maintainability)cpc

The cost of training a programmer to write programs in a particular language is related to how
orthogonal and readable a language is [41, p. 39]. In order for a programmer to learn to program
in a particular language the programmer must be able to read and understand his own code. A
program that is orthogonal and readable thus reduces the cost of training a programmer to write
programs in a particular language.
The cost of writing programs in a language is a function of the writability of a language and is
therefore also related to the expressivity and simplicity of a language. The original intention behind
the design of some of the first high-level languages was to reduce the cost of writing a program in
a language and to make code machine independent [41, p. 39].
A language with an inefficient compiler adds to the cost of using a particular programming language
[41, p. 39].
Another desirable feature of a language is related to the execution of a language which, in large,
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is influenced by the design choices of a language, thus languages that require many run-time type
checks will, to some degree, hinder fast execution of a language.
The early interests for Java were helped by the fact that free compilers and interpreters were
available for the language, and thus the language implementation system also plays a role in the
total cost of using a programming language [41, p. 40]. For some programs, reliability is a key
factor e.g. on aeroplane software, where the cost of not having a reliable programming language
can be severe.
The last characteristic of a language is the cost of maintaining a language which is closely related
to how readable the language is.

5.2 Programming Paradigms

In this section, we will describe the four main programming paradigms: the imperative, the object-
oriented, the functional, and the logical programming paradigms [43]. These will be used in the
design of Tang in chapter 6 to help decide which kind of language Tang is and thus which single or
multiple paradigms Tang fits within.

A programming paradigm is ´´A pattern that serves as a school of thoughts for programming of
computers” [44] meaning that a programming paradigm is a specific way of thinking of computer
programming and how to solve problems.

5.2.1 The Object-Oriented Paradigm
The object-oriented paradigm spans the languages that follow the concepts of object-oriented pro-
gramming which according to [45, p. 281] is:

• Encapsulation and abstraction

• Subtypes

• Inheritance

• Dynamic method selecting

In object-oriented languages, objects can be created that encapsulate some data, and is only ac-
cessible within or through that class. Information hiding is also used as way to abstract over data,
some languages support information hiding through private and public access modifiers [45, p. 281].
Subtypes are the principle of which we define a new type (the set of object instances for a class [45,
p. 287]) T based on another type S. More specifically a class T is said to be a subtype of S when
“[. . . ] every message understood (that is which can be received without generating an error) from
objects of S is also understood by the objects of T.” [45, p.287].
Inheritance is the definition of new objects, which extend upon another object and thus inherit the
behaviour of that object. Dynamic look-up is related to the fact that methods in object-oriented
languages can be overridden and thus there can be multiple versions of a a method on a specific
object, the dynamic look-up will ensure that the right method is called at run-time [45, p. 281].
Consider an example with two classes: Rectangle and Square, that both extend upon the Geometric
class and override its method CalculateArea. Then the method can either be the area of a square
or a rectangle depending on how it is declared (see listing 5.1).
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1 Geometric s = new Square(2, 2);
2 Geometric r = new Rectangle(2, 5);
3 System.out.print(s.CalculateArea ()); // printing 4 (square)
4 System.out.print(r.CalculateArea ()); // printing 10 (rectangle)

Listing 5.1:

5.2.2 The Functional Paradigm
Functional programming languages are based on mathematical functions, and differ a lot from the
imperative paradigm. It is said that “[. . . ] purely functional programs are easier to understand,
both during and after development, largely because the meanings of expressions are independent of
their context [. . . ] ”[41, p. 658], making them more readable and reliable. In purely functional
programming no variables or assignment statements are used. Instead programs consist of function
definitions and function applications [41, p. 662]. Functional languages are said to be referential
transparent meaning that given the same parameters to a function, the function always produces
the same result [41, p. 662]. Many functional programming languages are not purely functional, but
have imperative-style variables, assignments etc. [41, p. 662]. Because of language characteristics
like lazy evaluation where expressions are not evaluated before its use [41, p. 74], programs written
in a functional programming language will on average, according to [41, p. 704], roughly have a
execution speed twice as high as that of the same program written in a imperative programming
language.

5.2.3 The Logic Paradigm
“Logic programming is characterized by programming with relations and inference.” [46, p.35]. A
logic program describes a problem to be solved and consists of axioms, rules and a goal statement
[46, p.35]. Furthermore, logic programming is said to be non-procedural and thus does not define a
procedure for how computations are made, but instead defines the structure of the result. Because
of problems with efficiency and to avoid non-terminating loops programmers must sometimes, in
current logical programming languages, use control statements [41, p. 745]. This approach breaks
with the pure logical way of thinking where we only specify what we need to accomplish the result.
Not how or in which order.

5.2.4 The Imperative Paradigm
The design of imperative languages is based on the Von Neumann architecture in computers. ”
This is reflected in the design of the imperative languages, with

• states - representing memory values with changing values,

• sequential orders - reflecting the single sequential CPU, and

• assignment statements - reflecting piping.” [46, p. 69].

One of the major differences between the imperative paradigm and e.g. the functional paradigm is
referential transparency. The idea of referential transparency does not hold for imperative languages
due to side effects [47].
Another important idea in imperative languages is sequencing: “Since the order of the bindings
affects the value of expressions, an important issue is the proper sequencing of bindings.” [46, p.
69].
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5.3 Syntax

The purpose of this section is to describe the theory relevant for defining the syntax of a language,
more specifically what a language, tokens, and regular expressions are, which we use to make the
lexer for the Tang language. We will then look at context free grammars which will be used in
chapter 6 to formally specify the syntactical rules of the Tang language. Furthermore, we look into
different grammar classes and their properties in order to determine which parsing technique will
be used in the implementation of the Tang language.

5.3.1 Tokens
“[. . . ] a token of a language is a category of its lexemes.” [41, p. 135]. Given a string s, s consists
of different lexemes which is the smallest syntactical unit for whom it is true that the unit is part
of a language and thus complies with the syntax of the language [41, p. 134]. A token is thus a
grouping of lexemes for which a syntactic rule can be defined. Such a rule can be described formally
by e.g. regular expressions.

Regular Expressions

Regular expressions are expressions that are built up by regular operations to describe languages.
Formally, given an expression R, it is said to be regular if it satisfies one of the following conditions,
which are explained further below [48, p. 63-64]:

1. "a for some a in the alphabet Σ"

2. "ε"

3. "∅"

4. "(R1 ∪R2), where R1 and R2 are regular expressions"

5. "(R1 o R2), where R1 and R2 are regular expressions"

6. "(R∗1), where R1 is a regular expression"

Item 1 represents the language for some {a} in the language. Item 2 represents the language
containing the empty string {ε}, and item 3 the empty language. Item 4-5 represents the languages
that can be obtained by applying the regular operations concatenation or union to the languages
R1 and R2. Item 6 represents the languages that can be obtained by using the Kleene star regular
operator on a language R [48, p. 64]. In this project we will use the notation for regular operations
defined in [49].

5.3.2 Context-Free Grammars
In this section, we will describe context free grammars (CFG) and Backus-Naur Form (BNF).
BNF is a notation used for CFG’s, which are notions used to specify the rules for strings within a
language using the syntax of a specific language. We do this in order to provide the theory necessary
to understand the notation for CFGs used in chapter 7, where we define the syntax for Tang.
A CFG is a way of defining the structure of sentences in a language and thus how they are built [1,
p. 114]. CFGs are often used in programming language specifications as a formal way to define the
syntax of a language, but are also used in various of parsing techniques and algorithms. A CFG,
G, can formally be defined by the elements represented in the following 4-tuple: G = (N,Σ, P, S)
[1, p. 114].
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• Σ represents a finite set of terminal symbols, which is found during the lexical analysis phase
of the compiler.

• N represents a finite set of non-terminal variables in the grammar. The non-terminal symbols
and terminal symbols must be disjoint: N ∩ Σ = ∅.

• P represents a finite set of productions, which is a set of rewriting rules of the form A →
X1...Xm where A ∈ N , Xi ∈ N ∪ Σ, 1 ≤ i ≤ m and m ≥ 0.

• S represents the start symbol.

To distinguish terminals and non-terminals, we use the notation given in [1, p. 115]. This means
terminal symbols are all lower case and names of non-terminals starts with an uppercase letter.

5.3.3 Backus-Naur Form
Instead of writing all terminals, non-terminals, and rules explicitly in a 4-tuple to define a CFG,
we can instead simplify this by using a BNF. A BNF is a meta-language, and is used to denote the
syntax of a programming language [41, p. 137-138].

A BNF consists of a set of productions of the form V → α where V is a variable and α is an
arbitrary number of non-terminals and/or terminals. Each production has a right-hand side (RHS)
and a left-hand side (LHS) which are the symbols placed of the right-hand and the left-hand side
of the → symbol.

Consider a simple example:

1. S → aS|ε

In this example, S is the start symbol for the grammar and the LHS of the production. On the
RHS of the production we find two terminal symbols contained in the alphabet Σ which for this
simple language are "a", "ε". ε denotes the empty string, which will be denoted as EPSILON later
in the report. Furthermore, we find the variable S on the RHS and since S is also the symbol on
the LHS this rule is recursive. The ’|’ symbol denotes the meaning of ’or’ stating that S can either
derive ⇒ ’a S’ or ε. Alternatively this can be written as:

1. S → aS

2. S → ε

5.3.4 Grammar Classes
In this section, we describe LL and LR grammars used in the top-down and bottom-up parsing
techniques respectively which are described in section 5.5.1. Furthermore, the properties of the
grammars will be used in section 6.3 to determine which grammar is most suitable for the choices
we make in this project.

LL Grammars

Given a grammar, G, then G is LL(k) if it is possible to make an LL(k) parser that uses a lookahead
of k symbols to parse a string in the language described by G [1, p. 145]. Furthermore, a grammar
is LL(k) if a parser uses a lookahead of k to determine which productions to apply [1, p. 146].
LL(1) grammars are a subset of the LL(k) grammars where k = 1 [1, p. 146]. An LL(1) grammar
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has the property that the grammar is unambiguous because if the grammar was ambiguous, there
would exist a string S such that S has two or more distinct left most derivations that can be used
to derive the string which cannot be the case since we can predict which rule to apply using a
lookahead of only one token [1, p. 161-162].

LR Grammars

“A Grammar is an LR Grammar if it can be parsed by an LR parsing algorithm” [50, p. 66], whereas
a LR(k) parser given the next k symbols of input and the symbols to be replaced (the handle) will
make the correct reduction [1, p. 190]. As seen in figure 5.1 all LL(K) grammars are a subset of
the LR(K) grammars meaning that if a given parsing algorithm can parse a LR(K) grammar it
can also parse an LL(K) grammar.

LALR As seen in figure 5.1 LALR grammars are between the LR(0) and LR(1) grammars. This
means that a parser that can parse LALR grammars can also parse LR(0) grammars but not LR(1)
grammars. LALR grammars are useful, since LR(1) parsers can have a large overhead of states it
can transition to. “With LALR (lookahead LR) parsing, we attempt to reduce the number of states
in an LR(1) parser by merging similar states. This reduces the number of states to the same as
SLR(1), but still retains some of the power of the LR(1) lookaheads.” [51].

Figure 5.1: Hierarchy over different parsing techniques [52, p. 4].

5.4 Semantics

According to [53, p. 1] semantics “[. . . ] is the study of mathematical models of and methods for
describing and reasoning about the behaviour of programs.”. When looking into the semantics of a
programming language, we are only concerned with the behaviour of a running program and not
with external things like if the language is user-friendly [53, p. 1]. In order to describe the behaviour
of the program, an abstract syntax for a legal program must be defined. Such a grammar could be
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a CFG which is described in section 5.3.2. The theory defined in this section will be used as a basis
for understanding the semantic definitions for the Tang language in section 6.3.

5.4.1 Structural Operational Semantics
The structural operational semantics define the behaviour of a program by using a transition system
[53, p. 1].
A transition system is a directed graph with a configuration that corresponds to different states in a
program and with transitions between the states. If a configuration has no outgoing transitions it is
called a terminal configuration. Furthermore, given two configurations a and b, there is a transition
from a to b (a, b), if there is a direct edge from the a configuration to the b configuration.
Formerly, “A transition system is a triple (Γ,→, T ) where Γ is a set of configurations, → is the tran-
sition relation, which is a subset of Γ×Γ, and T ⊆ Γ is a set of terminal configurations.” [53, p. 30].

In [53, p. 30] two kinds of operational semantics are described: big-step and small-step seman-
tics.

Big-step semantics transitions (α, β) are computations that start in the α configuration state
and end in the β configuration state, where β is a terminal configuration [53, p. 31].

Small-step semantics transitions (α, β) describe single steps of computations that are part of a
larger computation and as such the β configuration is not always a terminal configuration.

A transition relation denoted by → is defined by a finite set of transition rules, which are rules
defined by a small-step or big-step semantic notation [53, p. 40-41]. A transition rule can consist
of two parts: premises and a conclusion. The rules are often written using fraction notation where
the numerator is the premise to the rule (claims) and the denominator is the conclusion of a rule.
A rule that has no premise is called an axiom [53, p. 40-41].
Consider a simple example from [41, p. 136] of a big-step transition rule for a plus operation:

“
s ` a1 →a v1s ` a2 →a v2

s ` a1 + a2 →a v
where v = v1 + v2” [41, p. 136]

Here the premises of the rule are given by the semantics in the numerator: s ` a1 →a v1s ` a2 →a v2
which says ’given a state, s, the expression a1 evaluates to v1 and given a state s, the expression
a2 evaluates to v2’. The conclusion is the denominator of the fraction: s ` a1 + a2 →a v which
together with the side note reads “given a state s, the expression a1 added with a2 evaluates to v
where v = v1 + v2.

An execution of a statement might change the value of a variable, the following notation repre-
sents a change of state where statement S is executed in state s which leads to state s”: 〈S, s〉 → s′

5.4.2 Type System
The type system defines, for each syntactical category, in a abstract grammar for the language, a
definition of the type judgement as well as a finite set of type rules that defines which type judge-
ments are valid [53, p. 186]. Given a syntactical category for integer expressions, a type judgement
could be defined as follows: E ` a : int, which states that a is of type int given the type bindings
of the type environment, E [53, p. 186]. A rule for numerals could then be: E ` n : int which
states that a numeral n is of type integer. Like with the operational semantics the rules of a type
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system does not have to be an axiom.

To keep track of the types of identifiers like variables and procedure names, a type environment,
denoted E, is used. E is a partial function E : Var ∪ Pnames ⇀ Types where E is the domain
and the union of procedure names and variables is the range of the function [53, p. 190] [53, p.
23]. A type rule could for instance be: E ` a : T , which states that a is of type T given the type
bindings of E [53, p. 186].
The type environment and environment-store model is related in the sense that if a variable x has
type T then the location of x should contain a value of type T .
Type systems are used in section 7.2.3 to define the type system for Tang.

5.5 Compilers and Interpreters

In this section we will describe the theory behind two different types of translators: interpreters
and compilers. The reason for doing so is to give an overview of the advantages and disadvantages
of each, which will be used in section 6.7.1 to discuss whether an interpreter or a compiler is most
suitable for Tang.

5.5.1 Compiler
A compiler translates a program written in a high-level languages such as C and Java into an object
program written in a low-level language such as x86 machine code [54, p. 27]. The program in
which the compiler itself is written is referred to as the implementation language [54, p. 27]. In
order to translate a program into its semantic equivalent object-code the compiler goes through a
series of steps as illustrated in figure 5.2. Each of these steps will be shortly described in order to
get an understanding of the phases involved in crafting a compiler.

Figure 5.2: Organisation of a syntax-directed compiler [55, p. 53]
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Lexer

The lexer is the part of the compiler that reads the source code and produces a string of tokens
(see section 5.3.1 for description of tokens) [1, p. 58]

Parser

A parser takes the tokens generated by the lexer and parses them according to the formal syntax
specification of the language [1, p. 16-17], which could be formally expressed through a CFG as
described in section 5.3.2. In other words the parser checks if the input can be derived from the
rules of the language. The result is shown in the form of a parse tree [1, p. 37]. The last process of
the parser is to build an AST [1, p. 37], which is a semantically equivalent stripped down version
of the initial parse tree where all unnecessary information in the parse tree has been removed [1, p.
45-46].

Type Checker

In the type checker, each AST is traversed in order to check that each construct in the tree is
semantically correct e.g. that variables are declared before they are used (assuming this is a semantic
rule of the language) [1, p. 17]. If the tree traversal does not produce any errors the AST is decorated
with ’types’. If it does produce errors an appropriate error message can be shown [1, p. 17].

Translator

Assuming that the type checker has traversed the AST and correctly checked that each node is
semantically valid, each node in the AST can be translated into an Intermediate Representation
(IR) [1, p. 17]. The IR not only describes the overall structure of the program, but also captures
the meaning of constructs and thus an IR of a ’while-loop’ will express that such a construct in fact
loops [1, p. 17].

Symbol Tables

The symbol table is a mechanism which can be accessed by all phases of the compiler. It contains
information about the code being compiled, such as types, variables, procedures, and labels [1, p.
18].

Optimiser

In the optimiser phase, the IR code is optimised in order to increase the execution speed of the
compiled program [1, p. 18]. A compiler might for instance eliminate unused computations.
Optimising can also take place after the code generation phase [1, p. 18]. An example of this is
peephole optimisation [1, p. 18]. This form of optimisation looks at small samples of the code at
a time and eliminates e.g. multiplication by 1 or addition by 0. Many compilers allow the user
to skip optimisation, as it is not needed to generate target code, but it often speeds up programs
significantly.

Code Generator

The code generator maps the IR onto the target language for the target platform. The complexity
of the code generator can become high, as it requires consideration of many special cases [1, p. 19].
Besides having compilers that compile code which are run on the same machine on which the code
is compiled, there exist a specific type of compilers known as cross-compilers. Cross-compilers run
on what is called a host-machine and generate code for another machine, the target machine [54,
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C → AVR

x86

C

P

AVR

P

x86

Figure 5.3: Tombstone diagram illustrating the process from C code compiled to AVR.

p. 31]. Cross-compilers are especially useful if the target machine has small memory capabilities
[54, p. 31]. The tombstone diagram in figure 5.3 shows an example of a cross-compiler where C
code is compiled to AVR machine code by a compiler written in x86 machine code and run on an
x86 machine. The result of this compilation is a program written in AVR code that can run on an
AVR machine.

5.5.2 Interpreter
An interpreter is, like a compiler, a language processor. Even though the end result of executing
a program by compiling or interpreting is mostly the same, the actions behind the two language
processors are undoubtedly different. This results in various advantages and disadvantages, which
will be described below.

One of the major differences between compilers and interpreters is their way of translation. Com-
pilers translate the entire input program to machine code, which will then be run at a speed that
is determined by the machine on which it is run.
Interpreters, on the other hand, do not perform much translation. The interpreter executes the
source program by fetching, analysing, and executing it immediately one line at a time [54, p. 34].
This allows the debugging process to pause at certain points in the code and read variable values
which can be a big help. However, it may also bring “[. . . ] significant overhead. As execution pro-
ceeds, program text must be continuously reexamined.” [1, p. 10]. In languages with fluid bindings,
this can mean interpretation becomes almost 100 times slower than compiled code [1, p. 10].

In code where each instruction in a source program will not be executed multiple times it can
be favourable to use an interpreter [54, p. 34]. This is because the overhead will be much reduced,
and since it will only be executed once execution speed is not essential [54, p. 34]. It can also
be favourable to use an interpreter, if each instruction can be analysed efficiently [54, p. 34]. If a
program of high speed is of importance, if each instruction will be executed multiple times, or if
instructions are inefficient to analyse, an interpreter may not be the ideal choice [54, p. 34].

5.6 Parsing Techniques

When creating a parser, some choices have to be made in advance. One of these choices regard
parsing techniques.
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Some of the most prominent and most frequently used are the parsers making use of the top-down
and bottom-up techniques. These are called LL and LR, respectively. The first letter of both, L,
denotes the reading and writing direction, left-to-right whereas the alternative is right-to-left. The
second letter denotes if the parser makes use of a leftmost or rightmost parse.
The names of the techniques can also describe a number of lookahead symbols, which describe how
many symbols should be read in addition to the current token, e.g. LL(1) describes a left-to-right,
leftmost parse with a lookahead of one symbol [1].
The following sections will describe the two parsing techniques: LL and LR.

5.6.1 Top-down Parsing
As mentioned above, top-down parsers make use of left-most derivations.
“Top-down parsers are in theory not as powerful as the bottom-up parsers [. . . ] However, because
of their simplicity, performance, and excellent error diagnostics, top-down parsers have been con-
structed for many programming languages, almost always using the recursive-descent approach.” [1,
p. 143].
Top-down parsers can be further categorised into recursive decent parsers and table-driven LL
parsers.

Recursive decent parsers Recursive-descent parsers are parsers that “[. . . ] contain a set of
mutually recursive procedures that cooperate to parse a string.” [1, p. 144]. Furthermore, they are
called recursive decent parsers because they are implemented by a collection of recursive procedures
based on a specific CFG.

Table-driven LL Parsers A table-driven LL parser uses a table to determine which rule to
apply. The table maps each pair of a non-terminal and a terminal symbol to a rule.

5.6.2 Bottom-up Parsing
“[. . . ] bottom-up parsers can handle the largest class of grammars that allow parsing to proceed
deterministically (i.e. without backtracking).” [1, p. 179]. This is illustrated in figure 5.1.
Bottom-up parsers are also called shift-reduce, because “[. . . ] the two most prevalent actions taken
by the parser are to shift symbols onto the parse stack and to reduce a string of such symbols
located at the top-of-stack to one of the grammar’s non-terminals.” [1, p. 180].

5.7 Visitor Pattern

In this section we describe the visitor pattern which is used throughout the implementation in
chapter 8 to traverse trees.
As the size of a compiler grows, so does the number of node types. Because of this, a large number
of classes have to be created which makes it difficult to grasp each node’s functionality. According
to [1, p. 264]: “[. . . ] modern software engineering principles dictate that the code for a phase should
be written in a single class, and not distributed among the various node types [. . . ] ”. The visitor
pattern is applicable when “[. . . ] you want to perform operations on these objects that depend on
their concrete classes.” [56, p. 333].

The visitor pattern works by implementing a general class that defines the visit method for the
nodes in the tree [56, p. 334]. A concrete implementation of the general class is also created, this
class defines a type of nodes in the tree and includes attributes valuable for the type of node as well
as making sure the accept method is used in each type of node [56, p. 334].
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Each type of concrete element needs its own visit method, this can be implemented as an in-
terface or can be generated automatically based on a grammar.
The implementation of the visitors defines what each type of node has to do when being visited.
Finally, to execute the visitor, we have to enumerate through all nodes by visiting each [56, p. 335].
The visitor pattern makes use of double dispatching when using its accept method. This means,
that invoking a method on an object with an abstract declared parameter makes the compiler know
which two types of objects it is dealing with at run-time. “Its meaning depends on two types: the
Visitor’s and the Element’s.” [56, p. 338].
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Chapter 6

Design

This chapter will specify the design of the Tang language by first analysing the language design
criteria and then prioritise them according to which are important for Tang in section 6.1. After
this, the language paradigm will be asserted in section 6.2 followed by a specification of the features
included in Tang in section 6.3. The syntax of the selected features is designed in section 6.4. In
continuation of this, scope and type rules are specified in section 6.5.
The previously mentioned choices of features to be implemented in Tang need to be prioritised
according to which features are the most essential. This is done by prioritising them according to
a MoSCoW analysis which can be seen in section 6.6.
The last section of the design chapter describes the compilation process including the choice of
translator as well as the target and implementation language which can be seen in section 6.7.

6.1 Language Design Criteria

Based on the language evaluation criteria described in section 5.1.1, we will, in this section discuss
the importance of each criteria in the context of this project. The resulting prioritisation of the
criteria will be used throughout this chapter when making decisions that will shape the Tang
programming language.

6.1.1 Readability
We prioritise readability as being very important because it can be difficult to debug errors at
run-time when developing software for microcontrollers, as described in section 3.1. By making
the readability high, errors will be easier to find directly by reading the source program. In a
language with high readability, reading the program to find errors is also viable since the programs
are relatively small in size due to the memory constraint, explained in section 3.1. Readability is
also very important because novices to embedded programming need to be able to easily read and
understand a program they have not written themselves.

6.1.2 Writability
As mentioned in section 5.1.1, writability is concerned with the ease of which a programmer can
write programs in a particular language. In correlation with the intended target group of Tang,
we have decided to prioritise writability as being important, since programmers that have not
previously programmed embedded systems should be able to easily write programs for the Arduino
hardware platform. However, as stated in [41, p. 45], increased writability in form of expressivity
comes at the cost of readability. Because of this, we have decided that increased writability of the
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programming language should not happen at the expense of decreased readability and thus decided
to prioritise readability over writability.

6.1.3 Reliability
When developing software for microcontrollers it is important to limit errors as they can be difficult
to find at run-time. Furthermore, since programmers have full control of the hardware, an error
could potentially break the physical hardware, if for example the Arduino controls a large current, a
motor, or an otherwise safety-critical system. Because of this, we prioritised reliability as important
in the design and implementation of the programming language developed in this project.

6.1.4 Cost
Tang’s target group consists of experienced programmers that want to learn embedded program-
ming, as described in section 1. This means that the cost of training programmers to use the
language is important to keep to a minimum in order to move the focus from learning a new lan-
guage to learning how to program embedded systems. Writability in our language is of concern
since programmers that are new to embedded programming need to be able to use Tang without
a lot of training. The main focus of this project is not for programmers to learn to use Tang,
but rather use the language to program embedded systems. Programmers in the target group for
Tang need to be able to read programs written in the language in order to learn how to program
embedded and to understand how the language can be used to interact with underlying hardware
components. For this reason, we prioritise readability over writability.
Compilation cost is not an important concern for this project, since the Arduino’s flash-memory
limits software size, as described in section 3.1, and flashing the software to the hardware will often
take even longer than the actual compilation process. Apart from that, Tang will not be created
to replace the Arduino language or AVR-C, but will be designed to be a bridge between low-level
embedded programming and high-level general purpose languages. This means that Tang will not
be practical for big and complicated projects.
Cost of executing programs is very important, since the Arduino is slow, compared to what most
programmers are used to in a modern PC.
Reliability cost is a concern, as a failure at this level can cause critical mistakes as software updates
are usually impossible or expensive to do and a failure will likely cause the product to be unusable
or even dangerous or it could destroy expensive hardware. But since the language is aimed for
programmers new to embedded programming we do not expect anyone to create critical systems in
Tang.
The cost of the language implementation system is less important, because the price of the Arduino
and compiler along with the availability of the compiler is not a concern of this project. Since
readability and writability is high, maintainability automatically becomes high, but this is not a
priority for us, just a side-effect.

Minimising cost of ... Very important Important less important
Training programmers x
Executing programs x
Writing programs x
Reliability x
Compiling programs x
Maintaining programs x
Implementation System x

Table 6.1: Shows prioritisation of the cost using a language.

39



Chapter 6. Design 6.2. Language Paradigm

6.1.5 Prioritisation
Based on the discussion in this section the following table 6.2 shows the final prioritisation of the
four main language criteria which we can use to make language decisions in section 6.3.

Very important Important Less important
Readability x
Writability x
Reliability x
Cost x

Table 6.2: Shows prioritisation of the four main language criteria.

6.2 Language Paradigm

Based on the theory of the four main programming paradigms in section 5.2, we will in this section
discuss and evaluate which paradigm(s) is/are more suitable for the development of the Tang lan-
guage which will be used in section 6.3 to discuss the features included in Tang.
According to 6.1 reliability and readability are highly prioritised language criteria for the Tang
language and therefore choosing to develop a language that has characteristics of the functional
programming language might seem like the obvious choice, since according to the theory in 5.2
functional programming languages tend to be both readable and reliable. However a major draw-
back of the functional programming language is that it requires a lot of memory and runs relatively
slow compared to e.g. languages within the imperative paradigm due to reasons explained in section
5.2.2.
This is a problem due to the speed and memory limitations of the AVR ATmega328p MCU intro-
duced in section 3.1.1. The lack of side-effects in purely functional programming languages also
somewhat contradict the need to change the state of a system which might be relevant for micro-
controllers, if they are to react on some input from the real world.
As with functional programming languages, current logical programming languages suffer in lack
of efficiency, especially for larger problems [41, p. 721].
Another drawback of using the characteristics of logical programming in this project is that we,
in this project, want programmers to fully understand what they do and how it works in order to
debug conveniently. Because the goal is to make a language for programmers that already know
software programming and want to learn hardware programming, we do not want a declarative
approach, but rather a procedural approach.
The idea of classes in the object-oriented paradigm can be used in the Tang language for making
libraries and abstractions of hardware components like we did in Arduino and Java in section 3.1
and 3.2.3. However due to the hardware limitations of the Arduino processor, as explained in 3.1,
programs are relatively small and thus adding other object oriented principles like polymorphism,
inheritance, and dynamic bindings might cause higher memory usage as shown in section 3.2.5.

Based on the previously described disadvantages of the functional, logical, and object-oriented
paradigms, in relation to this project, we have chosen the imperative paradigm for the Tang lan-
guage. The reasons for this choice is that the imperative languages do not have any common
characteristics which limit the creation of an efficient programming language in terms of speed of
execution.
Furthermore, the imperative paradigm allows for a sequential execution of instructions with side
effects which we think are most suitable for hardware programming as it is the way the execution
of machine code instructions works on the hardware level.
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According to [41, p. 704] in imperative languages “[. . . ] the details of dealing with variables ob-
scure the logic of the program.” which affects the readability of the language. Therefore, focus on
readability is especially important in the syntax design of the Tang language which is discussed in
section 6.4.

6.3 Language Features

In this section we will discuss different language features and select which of these features should
be included in Tang.
We select these features based on a discussion of each feature and the prioritised language criteria
established in section 6.1.
We use AVR C-syntax as a reference for recognising which features are included in Tang, thus,
for example, the % operator is a reference to the modulo operator in AVR C, but does not state
the syntax of the operators included in the Tang. The syntax of the operators included in Tang is
instead discussed in section 6.4.
The symbol x indicates that there is no AVR C syntax for a given language feature.

Data Types and Literals
Based on the different primitive data types shown in table 6.3, we will discuss which primitive data
types should be included in Tang.

There is a need to represent integer values in our language since integers can be used to make
iteration variables, represent analogue input/output values, and make mathematical expressions.
We choose to exclude unsigned integers because of casting problems between unsigned and signed
integers and the dangers of overflow associated with casting.
If an unsigned integer is used in an expression in C, C will cast everything to unsigned and execute
the expression, which might cause unexpected results which the code in listing 6.1 illustrates. This
could however be avoided in a language if unsigned and signed integers were seen as two distinct
types. We choose not to do this because of the similarities that signed and unsigned integers have
and that it therefore can be confusing for a programmer that they e.g. cannot multiply a signed
integer with an unsigned.
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1 #include <stdio.h>
2
3 int main(void)
4 {
5 unsigned int plus_one = 1;
6 int minus_one = -1;
7
8 if(plus_one < minus_one)
9 printf("1 < -1"); // Gets executed
10 else
11 printf("boring");
12
13 return 0;
14 }

Listing 6.1: Demonstration of casting an unsigned integer to an expression in C. Program outputs
"1 < -1"

Larger bit lengths than 32 has been omitted for the sake of the simplicity of the language. This
means that numbers over 231 will not be natively supported, but since the Arduino is not designed
for doing heavy math, we do not expect this to be an issue in most cases. Binary values were chosen
to be represented through a boolean type instead of a bit type in order to enhance readability and
to ensure that boolean expressions are used for control structure conditions [41, p.35]. In contrast
to C that represents registers as integer pointers, we instead choose to introduce separate types for
registers in Tang without introducing pointer arithmetic. We include register types to represent
hardware registers like DDRB and PORTB, to easily enable the programmer to interface with the
hardware like pins, ADC, and timers.

Type AVR C syntax Included in Tang
Unsigned integer unsigned int No
Real numbers float / double No
Boolean _Bool Yes
String char* No
Integer int No
Signed integer 8 bit char Yes
Signed integer 16 bit short / int Yes
Signed integer 32 bit long Yes
No type void Yes
Register 8 bit x Yes
Register 16 bit x Yes
Pin x No
Char char No

Table 6.3: Shows selected primitive data types for the Tang language.

Bitwise Operators
Line 10 in the blink example for AVR C seen in listing 3.8 shows how bitwise operations are used
to turn off an LED by setting the fifth pin on PORTB to 0: PORTB &= ∼ (1<<PIN5). To simplify
the operations of modifying bits in registers we choose to include a bit index operator for changing
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the value of a bit based on an integer index. The syntax of the bit index operator is described in
section 6.4. We do not include bitwise and, or, exclusive or, left shift, right shift, and not. This is
done to simplify the language for programmers who are not familiar with bitwise operators.

Bitwise operators AVR C syntax Included in Tang
And & No
Or | No
Exclusive or ^ No
Left Shift « No
Right shift » No
Not ∼ No
Bit index operator x Yes

Table 6.4: Bitwise operators, their AVR C syntax, and if they are included in Tang.

Logical Operators
Logical operators provide a way of expressing logic in a language and have therefore been included
in the Tang language. The binary logic operators and and or can be used to connect boolean
expressions while the not operator can invert the boolean value of an expression.

Logical operators AVR C syntax Included in Tang
And && Yes
Or || Yes
Not ! Yes

Table 6.5: Logical operators, their semantic meaning, and if they are included in Tang.

Comparison Operators
The six comparison operators in table 6.6 have all been included in the Tang language as they
provide the opportunity for comparisons between different expressions, which for instance can be
useful in control structure conditions for stating when a condition is true or false.

Comparison operators AVR C syntax Included in Tang
Equality == Yes
Greater than > Yes
Less than < Yes
Bigger than or equals >= Yes
Less than or equals <= Yes
Not equals != Yes

Table 6.6: Comparison operators, their description, and if they are included in Tang.

Arithmetical Operators
Table 6.7 shows different arithmetical operators which have been included in Tang as they can be
used to evaluate numerical expressions. Addition, subtraction, multiplication, and division are all
basic arithmetical operations. Power extends these basic arithmetical operations and the modulo
operator is used to get the remainder of an integer division. The modulo operator is useful whenever
integers are included in a language which is the case for this project as previously described.
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Arithmetical operators AVR C syntax Included natively in Tang
Addition + Yes
Subtraction - Yes
Multiplication * Yes
Division / Yes
Modulo % Yes
Power x Yes

Table 6.7: Arithmetical operators, their description, and if they are included in Tang.

Pointer Operators
Avoiding visible pointers and pointer operators will give a more reliable programming language, as
explained in section 5.1.4, which we previously determined to be important for the Tang language.
Furthermore, from the group members own experiences, we know that pointers can be difficult to
work with and can be dangerous because you can overwrite important data, which are a reason
why we choose to exclude pointers in the language and thus omitting pointer operators.

Pointer operators AVR C syntax Included in Tang
De-reference * No
Address of & No

Table 6.8: Pointer operators, their description, and if they are included in Tang.

Assignment Operators
Compound assignments such as the five operators: +=’, ’-=’, ’*=’,’/=’, ’%=’ showed in table
6.9 illustrates a short syntax for computing the result of an expression where the variable that is
assigned to is used as the left operand in an operation. For instance a += 2 is a shorter version of
a = a + 2 and are thus two ways of expressing the same computation.

Having multiple ways of performing the same action reduces the simplicity and therefore also
the readability of the language. Furthermore increased expressivity can decrease the readability of
a program [41, p. 45]
As determined in section 6.1, readability is prioritised over writability and therefore we choose not
to include any compound assignment in the Tang language.
The assignment operator is included as this is essential for saving the result of a computation.

Assignment operators AVR C syntax Included in Tang
Assign = Yes
Add and assign += No
Subtract and assign -= No
Multiply and assign *= No
Divide and assign /= No
Modulo and assign %= No

Table 6.9: Assignment operators, their AVR C syntax, and if they are included in Tang.
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Control Statements
The control statements listed in table 6.10 are constructs commonly seen in imperative languages
such as C and Python and are convenient ways of iterating and controlling the state of a program.
However, some of these statements have many common usages and thus both if-statements and
switch-statements are conditional statements where the execution of code depends on the condi-
tional expression in the statements.
Switch cases generally have some limitations in their usage. For instance, switch cases cannot eval-
uate logical expressions, only int or char types in languages such as C. Since if-statements can do
all these, this means that every switch-statement can be rewritten using if-statements, whereas
the opposite is not the case.
Because we prioritise readability over writeability, we choose to exclude switches in the language
for the sake of the simplicity, which according to the theory in section 5.1.1, makes a programming
language easier to learn.
Likewise, while loops have been favoured over do while loops.

Control statements AVR C syntax Included in Tang
If then if(){} Yes
If then else if(){} else{} Yes
Switch switch(){case 1 : break;} No
For loop for(; ;){} Yes
While loop while(){} Yes
Do while loop do {} while() No

Table 6.10: Control statements, their AVR C syntax, and if they are included in Tang.

Additional Constructs
Table 6.10 shows other language features we have discussed as possible features for the Tang lan-
guage.
We choose to include comments in the Tang language as it can increase the readability of a program
by explicitly stating and explaining thoughts, choices, and meaning throughout the source code.
Multiple and single line comments have both been included to increase the writability of writing
comments as this choice in most cases will not affect the readability of the source program due to
syntax highlighting in most modern text editors.
As a way of adding libraries and splitting source code into multiple files, we choose to add a fea-
ture for file inclusion in the Tang language. However, we choose not to have access modifiers and
namespaces in the Tang language as these features are more relevant for big and complex programs,
whereas the Arduino has limited memory (see section 3.1). Therefore, it is unsuited for bigger and
more complicated projects and thus we choose to omit these features to enhance the simplicity of
the language.
Furthermore, arrays will be included in Tang as they are useful for encapsulating values of the
same type into a simple data structure. Arrays can also increase the readability of a program, in
contrast to not having a data structure that e.g. allows a programmer to iterate through a number
of variables multiple times.
Another feature is interrupts which will also be included in Tang to enable full utilisation of the
microcontroller’s capabilities.
A variation of classes as we know them from the object oriented paradigm will be included in Tang
such that a class in Tang is an encapsulation of methods and variables, but will not contain con-
structors, access modifiers etc. because of the selected paradigm of Tang and for the sake of the
simplicity.
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As a last feature we choose to include functions in Tang as it allows programmers to define algo-
rithms which encourages code reuse and makse more structured code and thus increases readability
and writability. We do not allow nested functions, as this can be simulated with classes and could
decrease the readability of the program.

Additional Constructs AVR C syntax Included in Tang
Single line comment // Yes
Multi line comment /* */ Yes
File inclusion #include Yes
Access modifiers x No
Namespaces x No
Arrays type name[] Yes
Classes x Yes
Interrupts void INT0_vect (void) { ... } Yes
Functions type name() {} Yes

Table 6.11: Control statements, their AVR C syntax, and if they are included in Tang.

6.4 Syntax Design

This section will describe the syntax of the included language features of Tang that were established
in section 6.3.
We will discuss the choices we make in regards to the syntax of Tang based on the prioritised
language criteria in section 6.1. Code snippets and tables are included in this section to show the
syntax of Tang in relation to the names used in section 6.3. The syntactical choices made in this
section are primarily based on a scientific paper regarding programming language syntax where
different syntax is rated in regards to intuitiveness by programmers and non-programmers [57].

Types
Tang is chosen to be statically typed. This means, that for every declaration, a type is required and
all types are known at compile-time. The type of a declaration is always located as the left-most
keyword in a statement. This applies to declarations of variables as well as functions, to increase
consistency and readability.
Integers in Tang are required to have the length defined as described in section 6.3. As described
in section 3.1, microcontrollers have relatively low memory sizes compared to e.g. a PC. In these
situations, it can be important to know the bit length to ensure that variables of a certain type
can hold the values assigned to these variables. Because of this, we choose to name the integer
data types with a post-fix number indicating the number of bits used to store the data type in
memory to enable the programmer to read and determine which integer type is suitable in specific
situations. By doing so, the programmer can also read and identify where integer types with lower
bit lengths can be used to reduce memory usage. This decreases the writability of the language in
comparison to always using the same integer type without considering the bit length, but as men-
tioned in section 6.1, we prioritise readability over writability and therefore require the programmer
to explicitly state the bit length for integer types.
To represent the bit length of integers, we choose three lengths of signed integers with a precision
of 8, 16, and 32 bits. The reason for this is that even though 16 bits are sufficient to hold numbers
up to 215 = 32768 and then a sign bit indicating if the number is positive or negative. There might
be a need for making applications where larger values are needed e.g. counting milliseconds on a
clock, where a 16 bit integer will only last about 32 seconds.
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To represent integers of a particular bit-length the syntax of integers is denoted by the int keyword
followed by a bit length of 8, 16, or 32, e.g. int8. More examples of the different possible integers
are shown in table 6.12. The type register could be, as in the case with the integer type, reduced
to reg. the reason for this, is that among programmers, who are new to embedded programming,
having this type explicitly written out, increases readability. Like integers, registers will also con-
tain a bit length of either 8 and 16. We do not include a bit length of 32 for registers as there is no
single value that can be read from a register on the ATmega328P that is longer than 16 bits but
there are few that are longer than 8, such as the 10 bit value that indicates the result of the latest
ADC reading [20, p. 305].
According to [57, p. 11], boolean was rated as being slightly more intuitive to read than bool, but
also with a higher standard deviation. Because of this, the two options are essentially equal in
regards to intuitiveness, and therefore, we choose bool based on writability.
char was not rated in [57], but as our target group has programming experience and knows about
primitive types, we choose to increase writability and use char over a more readable statement to
non-programmers as character.

Tang syntax description
bool boolean
int8 8-bit signed integer
int16 16-bit signed integer
int32 32-bit signed integer
nothing no type (see section functions below for explanation)
register register type
char character

Table 6.12: Shows the chosen types for Tang along with the syntactical design in Tang and descrip-
tion of the types.

Arrays
Arrays in Tang can be defined in three ways, either with values, a size, or without. If an array has
values, the size does not need to be specified. If an array, when defined, is not initialised to specific
values, the size needs to be explicitly stated. Examples of arrays in Tang can be seen in listing
6.2. The index operator for arrays in Tang corresponds to the one, that programmers find the most
useful in [57, p. 13] which is name[indexNumber].

1 int8 [5] emptyArray
2 int8[] nonEmptyArray = [2,3,5,7,11]
3 int8 [2] = [1,2,3,4,5] //illegal , size does not fit content
4 int8[] emptyArray2 //illegal , empty array needs explicitly stated size

Listing 6.2: A code listing showing arrays in Tang.

Identifiers
Identifiers are necessary for all variables, functions, classes, and arrays in Tang. Identifiers are
always to the right of the type when in initialisations and can thereafter stand alone, as seen in
listing 6.3.
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The reason behind this syntactic design choice of identifiers is that our target group consists of
people with programming experience and they already know this syntax from basic languages like
C and Java [58] [59]. Valid identifier names consist of only alphanumeric characters and underscore
and cannot begin with either a digit or underscore.

1 int8 a
2 a = 2

Listing 6.3: A code listing showing identifiers in Tang.

Separate and Group Statements
A decision we had to make was the syntax of how to group statements into blocks to be used
in language constructs such as in the bodies of control structures. We discussed two options for
grouping statements; curly braces and indentation.
We chose indentation over curly braces as it forces the programmer to write more readable code
(forcing correct indentation) and it increases readability by refraining from getting multiple lines
with single closing curly braces. However, this can decrease writability amongst programmers who
do not usually indent their code. This choice corresponds with the choices made in section 6.1
where readability was prioritised over writability. Regarding statement separator-terminators,
we have chosen to use newline to terminate statements. By not having to end each statement
with extra symbols, e.g. semi-colon (;), as in programming languages such as C, Java, and C#
do, we increase writability. This may also increase readability, as we refrain from making multiple
statements in one line and instead force new statements to be on new lines. An example of our
implementation of indentation and statement separator-terminators can be seen in listing 6.4 where
it is compared with an equal listing written in C, seen in listing 6.5.

1 if(a==5)
2 a++
3 return x

Listing 6.4: A code listing showing indentation and statement separator-terminators in Tang.

1 if(a==5){
2 a++;
3 return x;
4 }

Listing 6.5: How to group and separate statements in C.

Functions
We now define the syntax for functions in the Tang language. As Tang is a statically typed language,
the return type for a function must be defined. In Tang, the type has to be the leftmost lexeme of
the function. To the right of the type is the name of the function, as seen in the syntax used for
languages like Java, C, and C#. The reason for this structuring is that a syntax already used by
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the majority of existing languages makes it easy to migrate both to and from these languages.
A different syntax was discussed, such as having the function name be the left-most token. As dec-
larations in the Tang language have the type to the left of the name, applying the same structure
to functions increases the orthogonality of the language (see section 5.1.1).
A specific function keyword is not needed, as it is the parenthesis after the function name, that
indicate that it is a function and not a variable declaration. In the same manner, the type indicates
that it is a function declaration, and not a function call. An example of such a function can be seen
in 6.6. Formal parameters each have a type and are separated by comma.

1 int32 max(int8 a, int8 b)
2 if(a>b)
3 return a
4 else
5 return b

Listing 6.6: A function i Tang

When the return type of a function is empty, the keyword chosen to indicate this, is nothing. The
reason this keyword is not chosen to be void, as is standard in most languages such as C and Java,
is to increase readability of the language. If the function is not declared to be of the type nothing,
a return keyword has to appear inside accessible code in the body of the function. The return state-
ment must include a value matching the return value of the function. The reason for not allowing a
return statement to appear alone, as it may in for void functions/methods in C and Java, is to in-
crease the readability of the language, as it is easier to understand what the function returns exactly.

In C, arrays cannot be directly set as parameters to a function, instead a pointer has to be imple-
mented. In Tang, however, pointers are not visible in the same way to the user. Without having the
user dealing with pointers, one advantage is, for example, that arrays can be used as parameters in
functions, without dealing with setting pointers for it. This increases the overall writability. [57]

Classes
Classes are defined with some of the same syntax as in C#. To simplify classes in Tang, constructors
are removed. If the user wants to initialise variables within a class, this has to be done manually.
An example of a Class in Tang can be seen in 6.7, where a substitute for a constructor, called init,
can be seen on line 8. The goal of classes in Tang, is to group methods and variables together.
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1 import uno
2
3 class Led
4 register port
5 register ddr
6 int8 pinIndex
7
8 nothing init(int8 pin)
9 port = uno.getPort(pin)
10 ddr = uno.getDdr(pin)
11 pinIndex = uno.getPinIndex(pin)
12
13 nothing on()
14 port{pinIndex} = true
15
16 nothing off()
17 port{pinIndex} = false

Listing 6.7: A class in Tang

Accessing Methods and Attributes in Classes

To access methods in classes in Tang, we have chosen to use the syntax seen in listing 6.8 line 3: an
object name is followed by a period followed by the method name to be called on the specific object.
After the object name, a period is placed followed by the name of the method and parentheses. If
the specific method requests parameters, these will be placed inside the parenthesis separated by a
comma.
The attributes that are accessible from an object follow the scope rules which we choose in section
6.5 and define in the operational semantics in section 7.2.

1 int8 pin = 2
2 Led led
3 led.init(pin)
4 led.on()

Listing 6.8: A class in Tang

Control Structures
if
In Tang, if statements are written with the same structure as in C. The only notable difference is
the lack of brackets and semicolon, described in section 6.4.

For loops in C, and many other languages, are defined by having three explicit parameters: decla-
ration, range, and increment. This approach can be considered unintuitive, as it does not directly
indicate, towards the user, what the expected outcome can be, e.g. in C for(;;) is legal and has the
same functionality as a while(true) loop. In contrast to this, the language Quorum has a far more
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readable for loop [57, p. 23]. The Quorum language for loop cosist of the statement repeatXtimes,
where the X is the number of times the loop repeats. The downside of increasing the readability
to what Quorum has is that some of the functionality is lost from the for loop, as the current
iteration number cannot be accessed in the scope of the loop, unless this is monitored by the user.
In Tang, a for loop consists of the keyword for, followed by parentheses, in which there are two
keywords required: from and to. In the parenthesis, an integer must first be declared, followed by
the range of the loop. The range can be declared as a signed integer, and be either incremental or
decremental. An example is shown in listing 6.9, where the loop structure iterates in a decremental
order, from 10 to −5. Furthermore, we design the for loops such that the range of the loop is only
calculated once, and such that the iteration variable, denoted i in listing 6.9, cannot be increased to
effect later loop-iterations. For the formal description of the design of for loops see the operational
semantic and type system in section 7.2 and 7.2.3, respectively.

1 int8 a
2 for(int8 i from 10 to -5)
3 a = a + i

Listing 6.9: A for loop in Tang

while
For while loops, the syntax is based on the C-like languages, as it is considered the most intuitive
amongst experienced programmers [57, p. 21].
While loops will therefore have largely the same syntax as if statements and for loops.
The syntactic design of the three control structures explained above can be seen in 6.13.

Tang syntax AVR C syntax
if(true) if(1)
for(int8 id from 1 to 10) for(char id = 1 ; id < 10; id++)
while(false) while(0)

Table 6.13: Shows examples of control structures in Tang compared to their respective C syntax.

Operators
The logical operators included in our language are consistent with the English language with the
exception of the logical operator not which is implemented as an exclamation mark (’!’). These
choices are based upon which symbol choices in [57, p. 13] that programmers rated the most intu-
itive.
Similarly, syntactic design of the comparison operators is made with programmers in mind. Ac-
cording to [57, p. 13], people with programming experience rate ’==’ the highest in regards to
intuitiveness when it comes to an equal operator. The study did not test the compound compari-
son operators like =>. We have chosen to implement compound comparison operators as they are
included in most programming languages, e.g. C# [60], which can be seen in table 6.14.
The design of arithmetical operators in Tang is based upon standard mathematical notation as most
people know this. These operators can also be seen in table 6.14.
As for the assignment operator, we choose the most intuitive choice, ’=’, not only from a mathe-
matical point of view, but also from a programming point of view [57, p. 11]. Table 6.14 shows the
syntactic design of all operators in Tang.
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Tang syntax name
and and
or or
! not

== equal
< less than
> greater than
<= less than or equal
>= greater than or equal
!= not equal
+ add
- subtract
* multiply
/ divide
% modulo
∧ power
= assign

Table 6.14: Shows the chosen operators for Tang along with their syntactic design and their names
on the right.

Additional Decisions
Besides the already defined syntax, we now describe the syntax of the remaining language features
that are included in Tang. These features can be seen in 6.15.
To refrain from making bit accessing look like array accessing, we have chosen curly braces instead
of square brackets for the bit indexing operator.
Comments are written using the syntax for single line and multiple line comments in listing 6.10
since programmers as well as non-programmers find this the most intuitive [57, p. 17].
For import statements, we have chosen the keyword import over e.g. using or include. According
to [57, p. 16], programmers find the import statement easier to understand.
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1 import io
2
3 // Single line comment
4 /*
5 Multiple
6 line
7 comment
8 */
9
10 int8 ledPin = 5
11
12 // Register type
13 register8 ledPort = register8(PORTB)
14
15 // Interrupt
16 interrupt(TIMER1_OVERFLOW)
17 // Toggle led when timer interval elapsed
18 ledPort{ledPin} = !ledPort{ledPin}

Listing 6.10: Code listing showing the design choices made in section 6.4 under additional decisions.

Tang syntax description
DDRB{5} Access bit at index 5 in register variable DDRB
/* */ Multi line comment
// Single line comment
import nano Includes the file nano.tang

Table 6.15: Shows syntactic design of additional decisions in Tang and their description.

Based on the selected operators, defined in this section, table 6.16 shows the operator precedence
of operators which are incorporated into the grammar for Tang described in section 7.1.2.
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Precedence Operator Associativity
1 () Left to right

{ } Left to right
! Right to left

2 ∧ Left to right
2 * Left to right

/ Left to right
% Left to right

3 + Left to right
- Left to right

4 > Left to right
< Left to right
>= Left to right
<= Left to right

5 = Right to left
!= Left to right

6 and Left to right
7 or Left to right

Table 6.16: Operators, their precedence and associativity in Tang.

6.5 Selecting Scope and Type Rules

Scope rules describe the available bindings when executing a specific procedure and are therefore
important to define. Type rules are also a necessity to be defined, as they define which types can
be used together in e.g. addition of integers or in casts. The scope rules and type rules of Tang is
formalised in the operational semantics and type system in section 7.2 and 5.4.2, respectively.

Selecting Scope Rules for Tang
As seen in section 7.2, we choose to have variables exist in their own scope and all sub-scopes of
that. Furthermore we previously decided that a variable of the same name and type cannot be
declared if it already has been declared in the scope.
Another possible solution could be to allow multiple declarations of the same variable, but overwrite
it each time it is declared again. This method could introduce problems, if the programmer forgets
a variable with a simple name is already declared and then overwrites it.

As seen in listing 6.11, line 1 declares a variable a of type int16 initialised to the value 2. Inside
the scope of the for loop we then try to declare the same variable, but as it already exists in an
outer scope, this is an illegal action. Control structures and functions declare a new sub-scope.

1 int16 a = 2
2 for(int8 i from 10 to 2)
3 int16 a = 10 // illegal declaration , since it has already been

↪→ declared in the outer scope
4 a = 10 // legal assignment

Listing 6.11: An extract of a Tang program showing legal and illegal actions regarding scope.
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For function calls we use static scope-rules where the variables we have knowledge about are the
variables that were known at the time of the function declaration. Consider the example in listing
6.12 where we, inside the function foo(), call a variable b that is declared after the declaration of
foo, but before the call to foo. This is illegal in Tang as we have decided that the language uses
static scope rules for variables because it is intuitive that one cannot use a variable that has not yet
been defined. However, the code in listing 6.12 would have been legal if Tang had dynamic scope
rules for variables.

1 int8 a = 2
2 nothing foo()
3 int8 sum = a + b // illegal operation no knowledge of b
4 int8 b = 3
5 foo()

Listing 6.12: Scope for variables in Tang

As for the scope rules of function calls you can call a function before it is declared. The reason for
this is that functions are different from variables in that, when a function is called, a jump is made
to execute the called function. This is possible because functions do not change after they are first
declared.
This also allows mutual recursive functions where two functions call each other. Consider a simple
example for the scope rules of function calls in listing 6.13 where a function foo calls a function bar
before bar is declared which is legal in Tang.

1 nothing foo()
2 bar() // legal call
3 nothing bar()
4 foo() // Also legal

Listing 6.13: Scope for functions in Tang

Selecting Type Rules for Tang
To avoid confusion and problems that arise when converting between types, we only allow a small
number of conversions.
Values can only be compared to values of the same exact type, with integers as an exception, as
arithmetic operations and assignments are allowed on integers of different sizes, but not other type-
categories.
When two integers are used as operands for an arithmetic operations such as addition, the resulting
value will be of the same type-size as the largest of the two values. Examples of type conversions
are shown in listing 6.14.
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1 int8 a = 2
2 int16 b = 5
3 bool c = false
4
5
6 a = c // illegal , as ’a’ is in the type -category int
7 // and ’c’ is in the type -category bool
8 a = b // illegal , as int16 values do not fit inside types int8
9 b = a // legal , int8 is converted to int16
10 a = a + b // illegal as the resulting type of ’a + b’ is int16
11 // and cannot fit in a variable of type int8
12 b = a + b // legal , ’a + b’ is of the larger of the operands
13 // type -size which is int16
14 if(c > b) // Illegal , since c is bool and is an int16
15 // Do stuff

Listing 6.14: An extract of a Tang program showing legal and illegal actions regarding type
conversion.

6.6 MoSCoW Prioritisation of Language Features

Due to the time constraint of this project, we will prioritise the language features established in
section 6.3. The prioritised language features will be used to determine which features should be
implemented first and also serve as a guideline for establishing the minimum viable product for Tang.

The language features are prioritised using the MoSCoW prioritisation rules, which is a set of
rules where requirements are prioritised into one of the four following categories: must have, should
have, could have, and will not have [61].

• The Must have requirements are the essential requirements without whom the final product
will not be satisfactory [61].

• The Should have requirements are important requirements that should be implemented if
there is time for it. However, these requirements are not essential for getting a working
product [61].

• The Could have requirements are the nice to have requirements, but not implementing these
will not make the final product less usable [61].

• TheWill not have requirements are the least important that we would like to have in the final
product, but which we will not have time to implement. These requirements are therefore left
out to be developed in later software iterations [61].

In the discussion below the language features established in 6.3 serve as the requirements for Tang.

Must Have
The must have features to be implemented in Tang are based on the requirements for the project
set in chapter 4 which states that the programmer should be able to control hardware components
on the Arduino. This means that the language must be able to do simple tasks like reading and
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writing to digital pins, so the language as a minimum can produce a program to run on the Arduino
to make a LED blink.

Signed Integer 8 Signed Integer 16
Boolean Register
Add Subtract
Multiply Divide
Not Equals
Smaller Than Greater Than
Logic And Logic Or
While If-Then
Assignment Interrupt
Bit index

Table 6.17: Must have

To fulfil the basics of our language, we choose to include while and if-then in the must have, since
these are basic control structures that can be used to simulate other control structures like for and
do-while. A for loop can be simulated with a while-loop, and a do-while loop can be simulated
using both an if-then and a while. A not operator (!) is also included which allows for inverting
the condition of if statements which can be used to simulate if-else statements, as well as not
equals.
For types, we chose to include a couple of different types suitable for most basic functionality. We
have a register type which enables the programmer to set and flip single bits in a hardware reg-
ister. This is especially useful for GPIO to read and write values of the pins of the Arduino.
Another hardware related feature that we choose to include under must have is interrupt because
it is needed for some applications that need to react on timer intervals or changing pin values. The
bool type only has two states; true and false, which while and if statements use as condition,
and all the comparison operators evaluate to one of these.
signed integer 8 and signed integer 16 are 8-bit and 16-bit signed integers used for representing
whole positive numbers. The reason for both 8 and 16 bits length is that 8 bit can represent a
character or just a single byte, while a 16 bit can represent larger numbers that is often dealt with,
and since they are very much alike, it will be easier to implement the second, once the first is made.
Some 8 bit arithmetic operations are, as described in section 3.2.1, supported by hardware instruc-
tions and can therefore be easier to implement, depending on the implementation language.
Basic arithmetic operators are also in the must have group of features. These include addition,
subtraction, multiplication, and division. Modulo is not included as this can be simulated with the
other operations, although slow. As bit indexing is an essential part of programming embedded
systems, this is also included in the must have requirements.
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Should Have

For-loop No type
Signed integer 32 If-else
Bigger than or equals Smaller than or equals
Not equals ∧ (to the power of)
Arrays Functions
Modulo

Table 6.18: Should have

The language should have for-loops, which makes iterating over statements both more readable
and writable. The language should also support signed integer 32 to enable bigger numbers.
This enables the programmer to have access to larger numbers.
The language should also have bigger than or equal, smaller than or equal and not equal
which makes conditions shorter and increases both writability.
The language should also have ∧ (to the power of), arrays, functions, and % (modulo). The ∧
and % provides short syntax for taking the power and modulo of an expression respectively, while
the array data structure is for storing a set of values of a specific type, which can e.g. be used in
different algorithms.
The functions are useful for abstracting over hardware components, making recursions and allow for
code reuse and encapsulation which can enhance readability. Implementing functions help abstract
over hardware components, which is one of the research questions listed in section 4.
Common for all these features are that they more or less can be simulated using the features
established in the Must have, but they are still important features as they allow for more expressive
and readable code as well as providing extra functionality like recursion.

Could Have

Char Comments
File Inclusion Classes

Table 6.19: Could have

The language could have the char type, comments, file inclusion, or class.
The char type will provide an easier to read syntax for displaying characters as they do not have
to be specified using integers. However, the char type is not a type that provides any extra func-
tionality to Tang or contain any information that can be used to enhance memory usage like the
integer types in the ”should have” requirements.
File inclusion allows for reusable code across multiple files and can be used to include libraries.
However, even though file inclusion is a could have feature for Tang it is not essential for making a
programming language for programming hardware.
A Class are merely an abstraction for encapsulating attributes and functions into objects, which
can increase both readability and writability, but is not a basic construct and can be imitated
using functions and variables, which is why they are prioritised low to ensure we get the basics
implemented first.

Comments are convenient to use to express thoughts and meaning which can enhance readability
though they are not essential for hardware programming and are, therefore, a could have require-
ment.
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Will Not Have
The language developed in the project, Tang, will not have floating point variable-types or string
variables as this could, although not as intuitively, be emulated with integers and char arrays. In
an ideal situation, floats and strings would be implemented in Tang, but as we have a limited time
schedule, we do not expect to have the time to implement these features.

Float Strings

Table 6.20: Will not have

6.7 Compilation Process

We now have a prioritised list of features and we will now look into how we will implement our trans-
lator. The purpose of this section is to choose whether an interpreter or a compiler is most suitable
for the implementation of Tang based on a discussion of the the advantages and disadvantages that
they each have in correlation to this project.

6.7.1 Choice of Using an Interpreter or a Compiler
One of the advantages of using compilation over interpretation is a significant increase of program
execution speed gained by compiling in comparison to interpretation as described in 5.5.2. This
characteristic is especially important for this project as we are making a program for programming
hardware and thus are not interested in any unnecessary performance decreases.
Another advantage of selecting compilation for this project is the ability to reuse the generated
object-code if the source-code does not have to be recompiled. However, in section 5.5.2 it was also
stated that compilation requires more memory than interpretation which might seem like a concern
for this project since section 3.1 highlights that a constraint of the ATmega328P is it has low
memory capabilities. To solve this problem while still obtaining the advantages of compilation in
relation to interpretation for this project, we chose to make a cross-compiler (5.5.1) which compiles
Tang to Arduino machine-code on an x86 system as illustrated on the latter part of the tombstone
diagram in figure 5.3. By doing cross compilation, the compilation process is not constraint by the
speed and memory constraints of the Arduino.

6.7.2 Target Language
To develop a compiler for Tang we need to decide what language we are translating to.
As described in section 3.1.2 and 3.2 Arduino has support for AVR assembler, C, Arduino language,
and Java which all are possible choices of target language.

AVR Assembler is a low-level language and is therefore arguably more difficult to read and write
than other high-level languages which makes it a less attractive target-language since we eventu-
ally have to generate code for the target-language. However, from a learning perspective it could
be interesting to generate code for AVR Assembler as it will give some insight into how different
language constructs are represented in low-level programming. Furthermore, it will provide a good
insight into the whole compilation process from a high-level language to a low-level language.

Compiling to the Arduino language means that we compile to a language that already has been
specially designed for Arduino programming, which means it already have support for different
hardware components. However, the Arduino language is merely an abstraction over the C++
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language and will just translate into another high-level language which gives a more complex com-
pilation process. A third option is to compile to Java, however the virtual machine for Arduino that
we have found and tested has been buggy and not fully developed. The whole setup also took over
an hour to make work and was still unstable and would still fail without reason. Furthermore, since
Java code is compiled to Java byte code which is then interpreted by the JVM on the Arduino, this
process is relatively slow as described in the theory in section 5.5.2. The last option is to generate
code for AVR C which is the option that we choose since it enables low memory usage compared to
the Arduino language and Java, as shown in section 3.2.5, while still supporting higher level data
types and control structures when compared to AVR Assembler.

6.7.3 Implementation Language
The implementation language for this project is going to be C# as it is a language that all group
members have experience in while also being an object-oriented language with many features from
other paradigms such as lambda-functions, pattern matching and so on which, in our opinion,
makes it a good choice for complex projects like this. Another reason is that the book used in the
Language and Compiler course is based on another object-oriented language (Java) which makes
the mapping between the two languages relatively trivial. Java was not chosen because not all
members had previously used written programs in it, and because of small irritations over lack of
features like properties.
Another option for implementation language could have been C++, but as with java, few group
members has much experience with the language. C++ also requires the developer to manage their
own memory, which can be frustrating, especially for larger applications.

6.7.4 Tombstone Diagram
Based on the choice of target and implementation language, we will now give an overview of the
compilation process by using tombstone diagrams.
Tombstone diagrams are a way of visualising the compilation process of a program. Figure 6.1
shows a program written in Tang which is inputted to a Tang-to-C compiler implemented in x86
machine code and run directly on a x86 system. This compilation process outputs a C program
that is passed as input to a C-to-AVR compiler, like avr-gcc, that runs on a x86 system. The result
of this compilation process is AVR macine-code that are able to run on the Arduino’s ATmega328P
MCU.

Tang → C

x86

Tang

P

C

P

x86

C → AVR

x86

x86

AVR

P

Figure 6.1

Figure 6.2 visualises the process where our compiler written in C# (CS on diagram) is compiled
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using a C# to x86 compiler. The result of this process is as shown a compiler implemented in x86
that produces C code.
In the figure 6.2, we visualise the process of compiling our compiler, which compiles Tang to C.
Our compiler is implemented in C#, which can be compiled to x86, using the C# to x86 compiler,
giving us our compiler in x86, which can be run on our PCs.

Tang → C

CS CS → x86

x86

Tang → C

x86

x86

Figure 6.2
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Chapter 7

Language Specification

Based on section 6, we will now formalise the Tang language. We will formalise Tang’s syntax and
semantics so it is clear how the different language constructs work together and what their meaning
is.
Note that due to time constrains this section will only describe the language specification for the
features that have been implemented in Tang and is thus only a subset of the features selected in
section 6.3. A discussion of the constraints of the language specification can be seen in section 7.3.

7.1 Formal Syntax Description

In this section, we describe the formal syntax of Tang based on the theory of tokens, regular
expressions, and grammar given in section 6.4. To do so, we use regular expressions to specify the
tokens of Tang.
The design choices in chapter 6 and the token specification are then used to define the CFG for
Tang. The token specification and the CFG will be used in the implementation chapter for the
lexer (section 8.2) and parser (section 8.3), respectively.

7.1.1 Token Specification
Based on the included language features and their syntax, described in 6.3 and 6.4 respectively, we
use regular expressions as described in 5.3.1 with the syntax specified in [49] to define the tokens
of Tang.

Table 7.1 shows the tokens of Tang including their associated regular expressions and whether
or not they are ignored in the lexical analysis of the compiler which will be further described in
section 8.2.
Note that the dedent and indent tokens do not have a regular expression. The process of identifying
these tokens are instead described in the implementation of the lexer in section 8.2.
Furthermore, the regular expressions marked with (**) indicate that a desired keyword cannot
be followed by any letters, numbers, or underscore, which in practice is checked using negative
lookahead in the regular expression, however, due to simplicity this has been left out in table 8.2.
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Name Regular Expression Name Regular Expression
lineComment (*) //.* return (**) return
blockComment (*) /\*.*\*/ int8 (**) int8
whitespace (*) [\t␣]+ int16 (**) int16
interrupt (**) interrupt int32 (**) int32
+ \+ enableinterrupts (**) enableinterrupts
!= \!= disableinterrupts (**) disableinterrupts
! \! import import [a-zA-Z0-9_.]*
% % register8 (**) register8
^ \^ register16 (**) register16
- - bool (**) bool
* \* == ==
/ / <= <=
( \( >= >=
) \) < <
newline \r?\n[\r\n\t␣]+ > >
numeral ([+-]?(0|([1-9][0-9]*))) = =
true (**) true , ,
false (**) false [ \[
if (**) if ] \]
else (**) else { \{
for (**) for } \}
while (**) while . \.
and (**) and from (**) from
or (**) or to (**) to
nothing (**) nothing identifier _*[a-zA-Z][a-zA-Z_0-9]

Table 7.1: Shows regular expressions for tokens in Tang.
(*) Ignored
(**) Must not be followed by letters or numbers matched by the regular expression [a-zA-Z_0-9]

The token specifications given in this section are used in the lexical analysis phases of the compiler
which is described in section 8.2.

7.1.2 Grammar
The grammar for Tang is shown in listing 7.1 and is based on the theory for BNF described in 5.3.2.
Note that all terminal symbols except the empty string symbol, EPSILON, start with a small letter.
These terminals correspond to the tokens and their associated regular expression in table 7.1.
The start symbol for the grammar is Program and the end symbol is eof. A string is a part of a
language defined by the CFG if it can be derived from the start symbol using 0 or more derivations,
which formally is defined as: “{w ∈ Σ∗ | S ⇒∗ w}” [48, p. 104].
The grammar for Tang is a LL(1) grammar based on the choice of parsing technique that will be
described in chapter 8.
Based on the theory in 5.3.4, we know that a grammar is LL(1) if we are able to make a prediction
using a look ahead of one. Furthermore, we know that the grammar is not LL(1) if we, given a rule
R, have two or more productions with a common left factor.
To remove these in the grammar we use left factorisation. For instance if we have two rules like R
-> a c and R -> a b then we would left factorise out the common ’a’ terminal by rewriting these
rules to R -> a RP and RP -> c | b.
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1 Program -> GlobalStatements eof
2
3 GlobalStatements -> GlobalStatement GlobalStatements
4 | EPSILON
5
6 GlobalStatement -> Interrupt
7 | IdentifierDeclaration
8 | IdentifierStatement
9 | RegisterStatement
10 | IfStatement
11 | WhileStatement
12 | ForStatement
13 | ReturnStatement
14 | InterruptStatement
15 | newline
16
17 Interrupt -> interrupt ( numeral ) indent Statements dedent
18
19 Statements -> Statement Statements
20 | EPSILON
21
22 Statement -> IdentifierSimpleDeclaration
23 | IdentifierStatement
24 | RegisterSimpleStatement
25 | IfStatement
26 | WhileStatement
27 | ForStatement
28 | ReturnStatement
29 | InterruptStatement
30 | newline

Listing 7.1: Shows the context free grammar for Tang in Backus-Naur Form. Part 1

The purpose of GlobalStatements and Statements, as seen in listing 7.1 is to make functions inside
functions impossible, as stated in section 6.3.
GlobalStatements can only exist in the outermost scope, while all other statements are of the form
Statements.

32 RegisterSimpleStatement -> RegisterType RegisterSimpleOperation
33
34 RegisterSimpleOperation -> ( Expression ) { Expression } = Expression

↪→ newline
35 | identifier SimpleDefinition
36
37 IdentifierSimpleDeclaration -> IntType identifier SimpleDefinition
38 | BoolenType identifier SimpleDefinition
39
40 SimpleDefinition -> = Expression newline
41 | newline
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42
43 IdentifierDeclaration -> IntType identifier Definition
44 | BooleanType identifier Definition
45 | nothing identifier ( FormalParameters )

↪→ indent Statements dedent
46
47 RegisterStatement -> RegisterType RegisterOperation
48
49 RegisterType -> register8
50 | register16
51
52 RegisterOperation -> ( Expression ) { Expression } = Expression newline
53 | identifier Definition
54
55 Definition -> = Expression newline
56 | ( FormalParameters ) indent Statements dedent
57 | newline
58
59 InterruptStatement -> disableinterrupts ( )
60 | enableinterrupts ( )
61
62 ReturnStatement -> return ReturnValue newline
63
64 ReturnValue -> Expression
65 | EPSILON
66
67 FormalParameters -> FormalParameter FormalParametersP
68 | EPSILON
69
70 FormalParametersP -> , FormalParameter FormalParametersP
71 | EPSILON
72
73 FormalParameter -> Type identifier
74
75 Type -> IntType
76 | RegisterType
77 | BooleanType
78
79 IdentifierStatement -> identifier IdentifierStatementP
80
81 IdentifierStatementP -> BitSelector = Expression newline
82 | ( ExpressionList )
83
84 BitSelector -> { Expression }
85 | EPSILON
86
87 IfStatement -> if ( Expression ) indent Statements dedent ElseStatement
88
89 ElseStatement -> else ElseBlock
90 | EPSILON
91
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92 ElseBlock -> IfStatement
93 | indent Statements dedent
94
95 WhileStatement -> while ( Expression ) indent Statements dedent
96
97 ForStatement -> for ( IntType identifier from Expression to Expression

↪→ ) indent Statements dedent
98
99 IntType -> int8
100 | int16
101 | int32
102
103 BooleanType -> bool

Listing 7.2: Shows the context free grammar for Tang in Backus-Naur Form. Part 2

Listing 7.2 shows the possible statements in Tang, such as different control structures, functions,
and variable declarations. According to this grammar, a statement such as true + 5 is possible,
since we do not know the types of variables at this type. These are defined in section 6.5.

Listing 7.3 defines the expressions possible in Tang. The purpose of the hierarchical structure
is to define the precedence of the different expressions.

108 Expression -> OrExpression
109
110 OrExpression -> AndExpression OrExpressionP
111 OrExpressionP -> or AndExpression OrExpressionP
112 | EPSILON
113
114 AndExpression -> EqExpression AndExpressionP
115 AndExpressionP -> and EqExpression AndExpressionP
116 | EPSILON
117
118 EqExpression -> RelationalExpression EqExpressionP
119 EqExpressionP -> == RelationalExpression EqExpressionP
120 | != RelationalExpression EqExpressionP
121 | EPSILON
122
123 RelationalExpression -> AddSubExpression RelationalExpressionP
124 RelationalExpressionP -> < AddSubExpression RelationalExpressionP
125 | > AddSubExpression RelationalExpressionP
126 | <= AddSubExpression RelationalExpressionP
127 | >= AddSubExpression RelationalExpressionP
128 | EPSILON
129
130 AddSubExpression -> MulDivExpression AddSubExpressionP
131 AddSubExpressionP -> + MulDivExpression AddSubExpressionP
132 | - MulDivExpression AddSubExpressionP
133 | EPSILON
134
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135 MulDivExpression -> PowExpression MulDivExpressionP
136 MulDivExpressionP -> / PowExpression MulDivExpressionP
137 | * PowExpression MulDivExpressionP
138 | % PowExpression MulDivExpressionP
139 | EPSILON
140
141 PowExpression -> PrimaryExpression PowExpressionP
142 PowExpressionP -> ^ PrimaryExpression PowExpressionP
143 | EPSILON
144
145 PrimaryExpression -> numeral
146 | identifier IdentifierOperation
147 | ( Expression )
148 | ! PrimaryExpression
149 | RegisterType ( Expression ) BitSelector
150 | true
151 | false
152
153 IdentifierOperation -> BitSelector
154 | ( ExpressionList )
155
156 ExpressionList -> Expression ExpressionListP
157 | EPSILON
158
159 ExpressionListP -> , Expression ExpressionListP
160 | EPSILON

Listing 7.3: Shows the context free grammar for Tang in Backus-Naur Form. Part 3

7.2 Structural Operational Semantics and Type System

After having outlined the syntax for Tang in section 7.1.2, which describes the set of programs that
are syntactically valid, we will now look at the semantics and type system of Tang.
To do this, we base this section on the theory for structural operational semantics and type systems
described in section 5.4.1 and 5.4.2, respectively.
In connection with this, we will describe the variables used in the semantic rules of Tang and
establish an abstract syntax to give an overview of legal constructs in the language. All the rules for
the structural operational semantics and type system can be seen in appendix C and D, respectively.
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7.2.1 Abstract Syntax

P ∈ Prog - Programs
S ∈ Stm - Root level statements
s ∈ SimpleStm - Scoped level statements

sif ∈ IfStm - If Statements
e ∈ Exp - Expressions
b ∈ BoolExp - Boolean expressions
i ∈ IntExp - Integer expressions
x ∈ VNames - Variable names
p ∈ PNames - Procedure names
n ∈ Num - Numerals

TInt ∈ IntTypes - Integer types {int8, int16, int32}
TReg ∈ RegTypes - Register types {register8, register16}

T ∈ Types - Types (TInt ∪ TReg ∪ {bool, nothing, undefined})
v ∈ Val - Values (Z ∪ {tt, ff})
r ∈ Ret - Return values. Ret = (Types×Val) ∪ ε

Table 7.2: Syntactic categories

Table 7.2 shows the syntactical categories that will be used in the semantic specifications for Tang.

P ::= S | ε
S ::= S1 newline S2 | s | T p(T1 x1, T2 x2, . . . Tk xk) indent s dedent | interrupt(n) indent s dedent
s ::= newline | e | s1 newline s2 | T x | T x = e | x = e

| x{i} = b | TReg(n){i} = b | return | return e | while(b) indent s dedent
| for(TInt x from i1 to i2) indent s dedent | sif

sif ::= if(b) indent s dedent | if(b) indent s dedent else sif
| if(b) indent s1 dedent else indent s2 dedent

e ::= x | i | b | (e1) | p(e1, e2, . . . ek) | TReg(n)
i ::= n | e | i1 + i2 | i1 − i2 | i1 ∗ i2 | i1/i2 | i1 % i2 | i1ˆi2
b ::= true | false | e | e1 == e2 | e1!= e2 | i1 < i2 | i1 <= i2 | i1 >= i2 | i1 > i2 | !b1

| b1 and b2 | b1 or b2 | x{i} | TReg(n){i}

Table 7.3: Formation rules where newline, indent and dedent are substitutes for their respective
tokens along with operators etc.

The formation rules for Tang shown in table 7.3 and the syntactical categories in table 7.2 constitute
the abstract grammar of Tang.

7.2.2 Structural Operational Semantics
The following model for representing memory locations and values stored at these locations are based
on [53]. We start out by defining what locations are and how to get new available memory locations.
Thereafter, we define the environment for variables denoted EnvV along with the environment for
procedures denoted EnvP. A function Sto is also defined to map locations to their corresponding
type-value pair. The type is stored so that e.g integer overflow can be detected. We use sto as a
variable for an arbitrary member of Sto:
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Sto = Loc⇀ (Types×Val)
sto ∈ Sto

An update of sto is denoted sto[l 7→ (T, v)], where the updated sto environment, sto′ is:

sto′y =

{
sto y if y 6= l

(T, v) if y = l

A location points to a specific place in memory and we therefore define the set of locations Loc to
be the natural numbers where a variable l denotes an arbitrary location:

Loc = N
l ∈ Loc

Furthermore a new location is defined by the function below where new returns a new unused
location [53, p. 81].

new : Loc→ Loc
new l = l + 1

Next we define the set of partial functions EnvV that map from a variable name to a location and
where envv is an element in EnvV:

EnvV = VNames ∪ {next}⇀ Loc
envV ∈ EnvV

We denote an update to the variable environment as follows: envV [x 7→ l], where the variable name
x is mapped to a location l which produces an updated environment env′V where env′V is defined
as:

env′V y =

{
envV y if y 6= x

l if y = x

Finally, we define the set of partial functions EnvP where envp denotes an arbitrary member of
EnvP:

EnvP = PNames⇀ (EnvV × SimpleStm× (VNamesk))

An update of EnvP on the form envP [p 7→ (envV , s, (x1, x2, . . . xk))] = env′P is defined as follows:

env′P q =

{
envP q if q 6= p

(envV , s, (x1, x2, . . . xk)) if q = p

The function default evaluates to the default value of a type.

default : Types⇀ Val

default T =

{
0 if T ∈ {int8, int16, int32, register8, register16}
ff if T = bool

The set of values that can be stored in a type is shown in the following table.
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Type Set(Type)
int8 {−28−1 to 28−1 − 1}
int16 {−216−1 to 216−1 − 1}
int32 {−232−1 to 232−1 − 1}
bool {tt, ff}
undefined ∅
register8 Loc

register16 Loc

nothing {NothingV al}

Furthermore, we define the following type relation for integers: int8 ⊃ int16 ⊃ int32.
We also define the function largestIntegerType that given a number of types checks if all types
are integer types and if they are it returns the biggest integer type that is given to the function.

largestIntegerType(TInt1 , TInt2 , . . . TIntk) = TIntj where 1 ≤ j ≤ k and TInti ⊇ TIntj for all 1 ≤ i ≤ k

Programs

The semantics of Prog are given by the transition system (ΓP ,→P , TP ) whose configurations are
defined by:

ΓP = Prog ∪Ret

TP = Ret

Transitions here have the format P →P r Where execution of a program P results in a return value
r. The transition rule [Statement] in table 7.4 states that a non empty program will be executed
by scanning the program to fill out a procedure environment and then executing the statement S
with respect to an empty store, variable environment and the newly filled procedure environment.
The empty variable environment is denoted env∅V .

[Statement]

〈S, env∅V , env
∅
P 〉 →Scan (env′V , env

′
P )

env′P ` 〈S, sto∅, env
∅
V 〉 →S (sto, envV , r)

S →P r

[empty] ε→P (nothing, nothingval)

Table 7.4: The transition rules →P

Scan System

In order to call procedures declared after a call statement to the procedure, we use a scan system
that fills out the procedure environment before any program code is executed. The Scan transition
system is defined as such: (ΓScan,→Scan, TScan). Its configurations are defined by

ΓScan = ((Stm ∪ SimpleStm)×EnvP×EnvV) ∪ (EnvP×EnvV)

TScan = EnvP×EnvV
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The following transitions are for the subset of Scan configurations (Stm × EnvP × EnvV) ∪
(EnvP×EnvV) and have the format 〈S, envP , envV 〉 →Scan (env′P , env

′
V ). The rule [ScanProcedureDeclaration]

stores a procedure in the procedure environment together with the current variable environment
which is filled by the rule [ScanV ariableDeclaration].
As such, the procedure will have knowledge of all variables defined prior to the procedure being
declared. Since procedures can only be declared in the global scope and variables defined in sub-
scopes are not available to the surrounding scope, the scan system does not define transition rules
for sub-scopes, as can be seen in rule [ScanWhileStatement].

[ScanProcedureDeclaration] 〈T p(T1 x1, T2 x2, . . . Tk xk) indent s dedent, envP , envV 〉
→Scan (envP [p 7→ (envV , s, (x1, x2, . . . xk))], envV )

Table 7.5: Subset of the transition rules →Scan

The following transitions are for the subset of Scan configurations (SimpleStm×EnvP×EnvV)∪
(EnvP×EnvV) and have the format 〈s, envP , envV 〉 →Scan (env′P , env

′
V ).

[ScanV ariableDeclaration] 〈T x, envP , envV 〉 →Scan (envP , envV [x 7→ l][next 7→ new(l)])

Where l = envV (next)

[ScanV ariableDefinition]
〈T x, envP , envV 〉 →Scan (env′P , env

′
V )

〈T x = e, envP , envV 〉 →Scan (env′P , env
′
V )

[ScanWhileStatement] 〈while(b) indent s dedent, envP , envV 〉 →Scan (envP , envV )

Table 7.7: Subset of the transition rules →Scan

Statements

The semantics of Stm are given by the transition system (ΓS ,→S , TS) whose configurations are
defined by

ΓS = (Stm× Sto×EnvV) ∪ (Sto×EnvV ×Ret)

TS = (Sto×EnvV ×Ret)

Transitions here have the format envP ` 〈S, sto, envV 〉 →S (sto′, env′V , r) where the execution of
a statement, S, in a store, sto and variable environment envV evaluates to an updated store and
variable environment as well as a return value.

The transitions for compound statements, as defined below, describe the semantics of sequen-
tial statement execution and states that: given two statements S1 and S2 that are separated by a
newline then if execution of S1 does not produce a return value r, the second statement is executed,
otherwise it is not and the return value is propagated. Statements may update the store and define
new variables. These updates are reflected in the resulting store and variable environment.

71



Chapter 7. Language Specification 7.2. Structural Operational Semantics and Type System

[CompoundStatement1]
envP ` 〈S1, sto, envV 〉 →S (sto′, env′V , r)

envP ` 〈S1 newline S2, sto, envV 〉 →S (sto′, env′V , r)

If r 6= ε

[CompoundStatement2]

envP ` 〈S1, sto, envV 〉 →S (sto′′, env′′V , r1)

envP ` 〈S2, sto
′′, env′′V 〉 →S (sto′, env′V , r2)

envP ` 〈S1 newline S2, sto, envV 〉 →S (sto′, env′V , r2)

If r1 = ε

Table 7.8: The transition rules →S

Simple Statements

The semantics of SimpleStm are given by the transition system (Γs,→s, Ts) whose configurations
are defined by

Γs = (SimpleStm× Sto×EnvV) ∪ (Sto×EnvV ×Ret)

Ts = (Sto×EnvV ×Ret)

Transitions here have the format envP ` 〈s, sto, envV 〉 →s (sto′, env′V , r).
An example of these transitions are the [RegisterSetBit] rule seen in table 7.10. This enables the
programmer to set the i’th bit in hardware register x.
The first premise does not get the value stored in register x but instead the address as well as the
type Tr which is either register8 or register16 depending on what x was declared as. The other
premises evaluate the boolean and integer expressions. Two conditions verify that the bit index is
within the allowed range for the register type.
A new value v′ for the register is calculated, then the value at locality l gets replaced by v′ in sto′
and the transition is complete.

[RegisterSetBit]

envP , envV ` 〈x, sto〉 →e (sto′′′, (Tr, l))

envP , envV ` 〈i, sto′′′〉 →i (sto′′, (Ti, vi))

envP , envV ` 〈b, sto′′〉 →b (sto′, (Tb2 , vb2))

envP ` 〈x{i} = b, sto, envV 〉 →s (sto′[l 7→ v′], envV , ε)

Where (Tv, v) = sto′ l

And vb1 =


tt if

⌊ v

2(vi)

⌋
mod 2 = 1

ff if
⌊ v

2(vi)

⌋
mod 2 = 0

And v′ =


v − 2(vi) vb1 ∧ ¬vb2
v vb1 = vb2
v + 2(vi) ¬vb1 ∧ vb2

If vi ≥ 0

And vi <

{
8 If Tr = register8

16 If Tr = register16
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Table 7.10: The transition rules →s

Another example of a simple statement transition is the [V ariableDefinition] rule.
This rule defines how variables are declared and initialized with a value.
First, the right side of the expression is evaluated to get the value to assign to the variable.
We then evaluate just the type and variable name to get the variable initialised with the default
value.
We can then update the sto′ returned by the evaluation of e and T x and update the store entry,
that x references, with the value e evaluated to.
The reason for evaluating e before T x is to avoid confusion if you wrote int8 x = x and more
complex examples of bad coding where the default value is used in a way it was not designed for.

[V ariableDeclaration] 〈T x, sto, envV 〉 →s (sto[l 7→ (T, default(T ))], envV [x 7→ l][next 7→ new(l)], ε)

Where l = envV (next)

[V ariableDefinition]

envP , envV ` 〈e, sto〉 →e (sto′′, (Te, v))

envP ` 〈T x, sto′′, envV 〉 →s (sto′, env′V , ε)

envP ` 〈T x = e, sto, envV 〉 →s (sto′[l 7→ (T, v)], env′V , ε)

Where env′V (x) = l

If v ∈ Set(T )

Table 7.12: The transition rules →s

If-statements
The semantics of IfStm are given by the transition system (Γsif ,→sif , Tsif ) whose configurations
are defined by:

Γsif = (IfStm× Sto) ∪ (Sto×Ret)

Tsif = (Sto×Ret)

Transitions here have the format envP , envV ` 〈sif , sto〉 →sif (sto′, r) and as with SimpleStm,
IfStm has the effect of modifying the store and returning a return value r.
Evaluation of an IfStm does not result in changes to the current scopes variable environment. This
means that any variables defined inside the if statement are not accessible outside of it.
Hereafter follows a subset of the IfStm transitions. An [IfElseStatement] evaluates b and if b
evaluates to tt then s1 is evaluated, else if b evaluates to ff then s2 is evaluated next.
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[IfElseStatement1]

envP , envV ` 〈b, sto〉 →b (sto′′, (T, v))

envP ` 〈s2, sto′′, envV 〉 →s (sto′, env′V , r)

envP , envV ` 〈if(b) indent s1 dedent else indent s2 dedent, sto〉 →sif (sto′, r)

If v = ff

[IfElseStatement2]

envP , envV ` 〈b, sto〉 →b (sto′′, (T, v))

envP ` 〈s1, sto′′, envV 〉 →s (sto′, env′V , r)

envP , envV ` 〈if(b) indent s1 dedent else indent s2 dedent, sto〉 →sif (sto′, r)

If v = tt

Table 7.13: The transition rules →sif

Expressions

The semantics of Exp are given by the transition system (Γe,→e, Te) whose configurations are
defined by:

Γe = (Exp× Sto) ∪ (Sto× (Types×Val))

Te = (Sto× (Types×Val))

Transitions here have the format envP , envV ` 〈e, sto〉 →e (sto′, (T, v)).
The semantics of variable evaluation is described by the transition [V arEvaluation]. A variable is
evaluated by looking up its address and then getting the value of that address via the store.

[V arEvaluation] envP , envV ` 〈x, sto〉 →e (sto, (T, v))

Where sto(envV x) = (T, v)

Table 7.14: The transition rules →e

Integer Expressions

The semantics of IntExp are given by the transition system (Γi,→i, Ti) whose configurations are
defined by:

Γi = (IntExp× Sto) ∪ (Sto× (Types×Val))

Ti = (Sto× (Types×Val))

Transitions here have the format envP , envV ` 〈i, sto〉 →i (sto′, (T, v)).
In the rules for the transition system for IntExp all the big-step semantic rules for arithmetic
operations have been defined along with the rule for numerals to integers.
To convert numerals to integers we define the function N : Num → Z, that for every numeral
returns the integer representation of that numeral [53].
An example of an arithmetic rule is the following semantic rule for integer division where we evaluate
the two operands of the expression to integers and divide v1 by v2.
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[ConstantToInt] envP , envV ` 〈n, sto〉 →i (sto, (T, v))

Where N JnK = v

And T =


int8 If v ∈ Set(int8)

int16 If v ∈ Set(int16) and v /∈ Set(int8)

int32 If v ∈ Set(int32) and v /∈ Set(int16)

If v ∈ Set(int32)

[IntegerDivision]

envP , envV ` 〈i1, sto〉 →i (sto′′, (T1, v1))

envP , envV ` 〈i2, sto′′〉 →i (sto′, (T2, v2))

envP , envV ` 〈i1/i2, sto〉 →i (sto′, (T3, v3))

Where v3 = bv1/v2c
And T3 = largestIntegerType(T1, T2)

If v2 6= 0

And v3 ∈ Set(T3)

Table 7.15: The transition rules →i

Boolean Expressions

The semantics of BoolExp are given by the transition system (Γb,→b, Tb) whose configurations
are defined by:

Γi = (BoolExp× Sto) ∪ (Sto× (Types×Val))

Ti = Sto× (Types×Val)

Transitions here have the format envP , envV ` 〈b, sto〉 →b (sto′, (T, v)).
Here follows two examples of transitions in the system.
[Equals] describes that two expressions are equal if they evaluate to the same value. [RegisterBitToBool]
describes the semantics of getting a single bit from a register variable.
Firstly, the integer expression i is evaluated to an integer value. Then the value in the register is
accessed by following the reference stored in x and afterwards we determine if the bit indicated by
vi is a 1 or a 0.

[Equals]

envP , envV ` 〈e1, sto〉 →e (sto′′, (T1, v1))

envP , envV ` 〈e2, sto′′〉 →e (sto′, (T2, v2))

envP , envV ` 〈e1 == e2, sto〉 →b (sto′, (bool, v3))

Where v3 =

{
tt if v1 = v2

ff if v1 6= v2

[RegisterBitToBool]
envP , envV ` 〈i, sto〉 →i (sto′, (Ti, vi))

envP , envV ` 〈x{i}, sto〉 →b (sto′, (bool, v))

Where (TReg, l) = sto(envV x)

And (Tr, vr) = sto(l)

And v =


tt if

⌊ vr
2(vi)

⌋
mod 2 = 1

ff if
⌊ vr

2(vi)

⌋
mod 2 = 0
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Table 7.16: The transition rules →b

7.2.3 Type System
In this section, we define the rules for the type system of Tang. The different rules are grouped
together according to their syntactical category as seen in the abstract syntax which can be seen
in table 7.3. This section shows some of the type rules for Tang. The type rules are shown in their
full extent in Appendix D and the following is an excerpt of these rules.
To map variable and procedure names to their corresponding type we define a partial function, the
type environment, E as follows:

E : (VNames ∪PNames) ⇀ Typesk

Here k is an arbitrate number and is used to denote that an identifier can map to a tuple with an
arbitrary number of elements.
An update of the type environment is written as follows E[x 7→ (T1, T2, . . . Tk)] where the resulting
Type environment E′ is:

E′(y) =

{
E(y) if y 6= x

(T1, T2, . . . Tk) if y = x

When defining new variables we check if the variable-name is already defined in the type environ-
ment, before updating the type-environment. We do this by returning undefined if the variable is
not yet defined in the type environment and making a check in each specific case.

E∅(y) = (undefined)

Programs

Type rules for program statements in Tang has the following type judgement: E ` P : ok.
Table 7.17 shows the [Empty] type rule for program statements, which states that our program is
well typed if the program is empty.
Furthermore, the [Program] type rule’s side condition: E = EScan(S,E∅[scope 7→ nothing]) will
invoke the auxiliary functions in table 7.25, that will recursively go through the source program
and put all procedures into the type environment which corresponds to the scope rules described
in section 6.5.

[Program] E ` S : ok Where E = EScan(S,E∅[scope 7→ nothing])

[Empty] E∅[scope 7→ nothing] ` ε : ok

Table 7.17: Type rules for Programs

Statements

Type rules for root level statements in Tang has the following type judgement: E ` S : ok.
Two type rules for statements can be seen in table 7.18. A [CompoundStatement] is well-typed if
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both the first and second statement are well-typed.
Whereas an [ProcedureDeclaration] is well-typed if the declaration of each of the formal arguments
as variables is well-typed and the function body is well typed.

[CompoundStatement]
E ` S1 : ok E1 ` S2 : ok

E ` S1 newline S2 : ok
Where E1 = E(S1, E)

[ProcedureDeclaration]

E ` T1 x1 : ok
E1 ` T2 x2 : ok
E2 ` T3 x3 : ok

. . .
Ek−1 ` Tk xk : ok

Ek[scope 7→ (T )] ` s : ok

E ` T p(T1 x1, T2 x2, . . . Tk xk) indent s dedent : ok

If E(p) 6= (undefined)
Where E1 = E(T1 x1, E)
and E2 = E(T2 x2, E2)
. . .
and Ek = E(Tk xk, Ek)

Table 7.18: Type rules for Root level statements

Scoped Level Statements

Type rules for scoped level statements in Tang has the following type judgement: E ` s : ok.
Table 7.19 shows some of he type rules for the scoped level statements in Tang.
The [V ariableDefinition] rule states that declaring a variable x of type T and initialising it to
the value of expression e, is type correct if e is of the same type, or a type that can implicitly be
converted to and if x is not yet defined in the type-environment.
[Return] and [ReturnWithV alue] is well-typed as long as the value returned is of the type that
the enclosing scope expects.

[V ariableDefinition]
E ` e : T1

E ` T x = e : ok

If E(x) = (undefined)
if T 6= nothing
if T = T1
or T ∈ IntTypes
and T1 ∈ IntTypes
and T = largestIntegerType(T, T1)

[Return] E ` return : ok

If E(scope) = (nothing)

[ReturnWithV alue]
E ` e : T

E ` return e : ok

Where (Tscope) = E(scope)
If Tscope = (T )
or Tscope ∈ IntTypes
and T ∈ IntTypes
and Tscope = largestIntegerType(T, Tscope)

Table 7.19: Type rules for scoped level statements
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If-statements

Type rules for if statements in Tang has the following type judgement: E ` sif : ok.
In table 7.20 a type rule for if statements is shown. The [IfStatement] rule states that an if
statement is well-typed if b is a boolean expression of type bool and the statement s is well-typed.

[IfStatement]
E ` b : bool E ` s : ok

E ` if(b) indent s dedent : ok

Table 7.20: Type rules for if statements

Expression

Type rules for expressions in Tang has the following type judgement: E ` e : T .
An excerpt of the type rules for expressions are shown in table 7.21. The rule [LeftV alueEvaluation]
states that the type of an identifier x is some type T if given the type environment E x’s type is T .
The type rule [ProcedureCallExpression] states that a procedure call is type correct if the actual
parameters match the type of their associated formal parameters.

[LeftV alueEvaluation] E ` x : T

Where (T ) = E(x) and T 6= undefined

[ProcedureCallExpression]

E ` e1 : T1
E ` e2 : T2

. . .
E ` ek : Tk

E ` p(e1, e2, . . . ek) : Tr

Where (Tr, T1, T2, . . . Tk) = E(p)

Table 7.21: Type rules for expressions

Integer Expressions

Type rules for integer expression in Tang has the following type judgement: E ` i : TInt.
An excerpt of type rules for integer expressions are shown in table 7.22 where the [Numeral] rule
states that any numeral n is of type integer.
Furthermore all integer-operations consist of 2 integers and evaluate to an integer and are almost
identical. The example shown is [AddOperation].
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[Numeral] E ` n : TInt

Where v = N JnK

And TInt =


int8 if v ∈ Set(int8)

int16 if v ∈ Set(int16) and v /∈ Set(int8)

int32 if v ∈ Set(int32) and v /∈ Set(int16)

[AddOperation]
E ` i1 : TInt1 E ` i2 : TInt2

E ` i1 + i2 : TInt

Where TInt = largestIntegerType(TInt1 , TInt2)

Table 7.22: Type rules for integer expressions

Boolean Expressions

Type rules for boolean expressions in Tang have the following type judgement: E ` b : bool.
Examples of type rules for boolean expressions in Tang are shown in table 7.23. The rules [True]
and [False] states that the keywords true and false are both of type bool.
Whereas the rule [EqualBool] states that the equality operation to check whether or not two
operands b1 and b2 are equal, is type correct and of type bool if both operands are of type bool.
[LessThan] compares 2 integers and evaluates to a bool if both integers is type-correct.
[RegisterGetBit] takes a register and an integer and finds the nth bit of register x, and returns it
as a bool.

[True] E ` true : bool

[False] E ` false : bool

[EqualBool]
E ` b1 : bool E ` b2 : bool

E ` b1 == b2 : bool

[LessThan]
E ` i1 : TInt1 E ` i2 : TInt2

E ` i1 < i2 : bool

[RegisterGetBit]
E ` x : TReg E ` i : TInt2

E ` x{i} : bool

Table 7.23: Type rules for boolean expressions

Auxilary Functions

Table 7.24 show auxiliary functions for updating the type environment.
An update of the type environment is relevant whenever we have a compound statement in a pro-
gram.
Consider an example where we first have a declaration of a variable, x followed by a second
statement that updates x. The second statement must know whether or not x exists and if so
what its type is. The update of the type environment comes in form of the side condition of the
[CompoundStatement] rule in table 7.18 which applies one of the auxiliary function of table 7.24.
If we have a compound statement S1 newline S2 then if S1 is a variable declaration of the form T x
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the auxiliary function [V arAux] for updating a variable x with type T is called before evaluating
the S2 statement. The structure of statement S1 determines which of the auxiliary functions is
applied.

[CompoundAux1] E(S1 newline S2, E) = E(S2, E(S1, E))

[CompoundAux2] E(s1 newline s2, E) = E(s2, E(s1, E))

[V arAux] E(T x,E) = E[x 7→ (T )]

[V arInitAux] E(T x = e, E) = E[x 7→ (T )]

Table 7.24: Auxiliary functions for updating the type environment

Table 7.25 shows the scan auxiliary functions which is used to fill a type environment with the
procedures of a program in a similar manner to that of the auxiliary functions of table 7.24.

[CompoundAuxScan1] EScan(S1 newline S2, E) = EScan(S2, EScan(S1, E))

[CompoundAuxScan2] EScan(s1 newline s2, E) = EScan(s2, EScan(s1, E))

[ProcAuxScan] EScan(Tr p(T1 x1, T2 x2, . . . Tk xk) indent s dedent, E) = E[p 7→ (Tr, T1, T2, . . . Tk)]
If E(p) = (undefined)

Table 7.25: Auxiliary functions for updating the type environment

7.3 Remaining Language Features

The following will describe the limitations of the syntax and semantic descriptions for Tang.

Missing features Classes, arrays, strings and chars have not been formally described in Tang as
these were prioritised as being less important features in the MoSCoW (see section 6.6).

All branches return The type system does not ensure that all branches in a function returns a
value.

Interrupts Lastly, the semantics of interrupts are not fully described, as interrupts can inter-
rupt execution after any single hardware instruction, whereas for example the semantics of division
might span several hardware instructions. with no simple mechanism for describing execution of
some unrelated code at any point.

Informal description of interrupts An interrupt statement: interrupt(n) indent s dedent
fills the interrupt vector on location n so that if interrupt n is triggered, the body s will be called,
assuming that the global interrupts are enabled and that interrupt n is configured in registers (see
Atmega328P datasheet [20]).
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Implementation

Based on the formal specification of Tang in section 7, we are now able to implement a compiler
for Tang.
In this section we describe the implementation of a compiler for Tang based on the following phases
of the compiler: lexical analysis, parsing, parse-tree to AST, type checking, and code generation.

8.1 Parser Implementation Approaches

Before the parser is implemented, the different approaches for doing this will be examined. Three
different approaches will be discussed.
The first approach is to use a tool to generate the parser based on a grammar for the Tang language.
The second approach is to implement the parser manually without using parser generating tools.
The third approach is to develop a parser generator tool ourselves and use this to generate a parser.
Finally, we discuss and decide which approach we will use in this project.

8.1.1 Parser Generating Tools
The tools examined will all support C# as parser implementation language, as this is the imple-
mentation language chosen for Tang in section 6.7.3. If a tool requires Visual Studio integration, it
is also a requirement that it will work with Visual Studio 2017, as this is the version we are using.
Each tool examined in this section will be evaluated in regards to the following points:

• Documentation of the tool, including tutorials, community etc.

• Ease of use including e.g. error messages.

As it is the first time the group has engaged in the making of a compiler, we have chosen to keep
the tool’s beginner friendliness in mind.

The tokens seen in listing 8.2 are outdated and therefore do not match the tokens explained in
table 7.1 exactly. For each tool, the grammar for Tang has been modified to fit the syntax. The
different grammars can be seen in appendix L.
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1 Program -> Statements
2 Statements -> Statement StatementsP
3 StatementsP -> newline Statement StatementsP
4 | EPSILON
5 Statement -> simpleType identifier Definition
6 | identifier assign integer
7 | newline
8 Definition -> assign integer
9 | EPSILON

Listing 8.1: Shows the grammar which will be used in the following examples of parsing generator
tools.

1 simpleType identifier assign integer newline simpleType identifier
↪→ assign integer newline identifier assign integer EPSILON

Listing 8.2: Shows the input token-stream used to test different parsing generator tools.

The input example used can be seen in listing 8.2.

Coco/R

“Coco/R is a compiler generator, which takes an attributed grammar of a source language and gen-
erates a scanner and a parser for this language.” [62].
The compiler generator accepts languages with an arbitrary number of lookahead symbols, which
means it accepts LL(k) languages [63, p. 1]. It makes use of the recursive descent parsing technique
[62].
The compiler description language for Coco/R is called Cocol/R and makes use of EBNF to specify
its grammar.
The official documentation of Coco/R can be found as a user manual on their website [63]. The
manual is in depth and covers areas such as input language, installation guide, and error messages.
No official communities for Coco/R exist. Instead a PowerPoint tutorial is linked to from their
website as well as a more in-depth text tutorial [62].

By following the informative tutorial and the user manual, Coco/R is relatively easy to use. It
specifies errors and their locations. It also outputs an understandable LL(1) warning, however,
we experienced that continuing compiling after the warning resulted in process termination due to
StackOverflowException, which also crashed the command prompt on the Windows testing ma-
chine.

GOLD

The GOLD parser tool is a versatile tool, used to generate LALR parsers, for a given language.
According to [64], the GOLD parser tool supports more programming languages than any other
parser tool tested in this section. On the GOLD parser website, a concise and relatively easy to
understand guide is listed. On the same website, a tool can be downloaded, called the GOLD parser
builder. The tool is used to test a given grammar, designed by the user, and to generate a skeleton
program for a parser.
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The syntax used for a grammar in the GOLD tool, resembles the standard BNF syntax [65]
The tool is capable of analysis and test of a grammar.
If the grammar is accepted, a LALR table and DFA state table are generated.

As the GOLD tool does not create anything other than the barebone structure of the parser
program, it involves some manual development from the user, which is a disadvantage compared to
other tools analysed.

SableCC

SableCC is a LALR(1) parser [66].
According to [67, p. 21]: “SableCC represents the result of our research to develop a Java compiler
compiler that meets new compiler implementation trends.”.
The research has resulted in the parser achieving results such as support for building an AST of
the compiled program and preventing corruption by making each AST node strictly typed [67, p.
22].
The main website for SableCC [68] has links to a documentation page, with links to tutorials and
more [69]. It also has links to an inactive community located on the Google forums and to the
source code of SableCC on GitHub.

SableCC is fairly straightforward to use, but requires the user to write their own interpreter/-
translator class [70, p. 181]. As SableCC can be used with Eclipse IDE, it makes use of the Eclipse
console to output error messages for the Java code.

ANTLR4

ANTLR [71] is an abbreviation of Another Tool for Language Recognition and is, as the name sug-
gests, a scanner and parser-generator. ANTLR generates code for recognising languages, generating
parsing trees, and traversing them by using the visitor or listener pattern [72].
The version used is ANTLR4 and it accepts grammars in the form of a .g4 file containing a EBNF-
like grammar.
One can run the ANTLR tool from the command line and specify target language and grammar file
and ANTLR will generate code in the target-language, which can then be imported into a project
and used.

We succeeded in making it generate a C# scanner and parser, but without proper documenta-
tion it is almost impossible to figure out how to use it for C#, and a lot of manual work is needed if
the grammar changes, since we need to manually call the tool from the command line and import
the generated code into the project by hand.

LLLPG

LLLPG [73] is an LL(k) parser (and scanner) generator, which is created as a C# directed alter-
native to ANTLR.
Since ANTLR is not directly written for C# and has little documentation on using it with C#.
LLLPG is part of an extension to C# called LeMP or Enhanced C# [74].
LLLPG has an easy to follow tutorial both for using it inside Visual Studio, but also with the
command line tool. LLLPG also has documentation besides the extensive tutorials. To use the
command line tool, you create a C# file and before compiling, you run it through the tool by
specifying the file in the first argument. If you run the tool without arguments it presents a way of
showing how to use the tool, which makes it unnecessary to look up documentation online.
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The output from LLLPG is readable and easy to modify, but only contains code to recognise
languages (e.g. to check for LL(1)), not parse them. However, this is doable with additional set-
tings or by hand.
LLLPG suffers the same problem as ANTLR. If we change the grammar we need to manually copy
the new code into the project and almost rewrite it from the beginning.

8.1.2 Writing a Parser by Hand
A parser can also be written by hand instead of using a tool to automate this process. When writing
a parser by hand, most often a top-down recursive descent approach is used, as bottom-up parsers
are table-based, which are cumbersome to fill out by hand [1, p. 143] [1, p. 179].
According to [1, p. 143] “Manual construction of such parsers (recursive-descent parser) is both time
consuming and error prone, especially when applied at the scale of a real programming language.".
Minor changes to the grammar may result in large changes to the code of the parser which means
that writing a parser by hand can be an even more time consuming task if the grammar is changed
often. Having to rewrite the code often also makes it more prone to error.
However, writing the compiler by hand also has its advantages. It gives the programmer a clearer
insight into the code of the parser. It is a more educative experience for the programmers, especially
if they have little to no previous experience of compiler programming.
Writing the parser by hand also saves time regarding understanding, installing, and using a parser
generating tool. In addition to this, the grammar does not have to be rewritten to fit the grammar
of the specific tool.
The implementation of the parser by hand can be made easier by making the grammar LL(1). This
is because we are able to parse a string using only a look-ahead of one token.

8.1.3 Writing a Tool for Parser Generation
The third and final approach examines the approach of writing a tool ourselves. Initially, this will
be a more time consuming task to implement compared to the two other approaches.
However, writing a tool to generate the parser has certain advantages, such as small changes to
the grammar will not require the programmer to make major changes of the parser generator code,
thereby shortening the iterative stages of developing a compiler. Writing a parser generator tool also
gives us insight in how the parser works and can therefore be considered an educative experience.
Having the parser be generated also makes it less prone to errors once the code for the tool is
stable. The disadvantages of writing a parser tool, is that the time it takes to implement the tool,
can exceeds the time it would take to write the parser ourselves.

8.1.4 Choice of Parser Implementation Approach
In the previous three sections, three approaches to developing a parser have been discussed. The
purpose of this section is to discuss these three approaches and decide upon an approach for this
project.
The first approach examined the way of using a preexisting tool to generate the parser from the
grammar for Tang. Using a tool requires us to understand it first by e.g. reading documentation
and rewriting our grammar to fit the syntax of the input grammar for the tool.
It would not give the group a lot of insight into the the specifics of the parser. Because we consider
this knowledge to be an important aspect of the learning goals, we have decided not to use a
preexisting tool.
The second approach concerns writing the parser by hand. This approach would, as opposed to
using a preexisting tool, give an insight into the ways of the parser. But as explained in section
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8.1.2, minor changes to the grammar will result in the code having to be changed to fit the new
grammar. Based on the initial learning curve associated with developing a compiler, we assume
that the iterative part of the process is going to take up the majority of the time spent. This means
that writing a tool by hand, although faster in the initial development, can be tedious and time
consuming whenever the grammar of the language changes.
The third and last approach is to develop a parser generating tool ourselves. Although this is a
time consuming task at first, it will not require as much time to update the code when the grammar
changes. Writing the tool ourselves also has the advantage of educating us regarding parser theory.
We choose to make a parser generating tool. The implementation of this tool and the generated
compiler for Tang will be explained in the following sections of this chapter.

8.2 Lexical Analysis

The lexer for Tang is configured by a set of rules in the tang.tokens.json file (see electronic ap-
pendix).
Each rule represents a token from the token specification in section 7.1.1. This includes the name of
the token and its regular expression, but also two optional attributes describing whether or not to
ignore the token in the output and if the token can span multiple lines. All the regular expressions
can be seen in table 7.1. An example of a rule can be seen in listing 8.3, where the regular expres-
sion for a block comment is shown. Here we see that a block comment can span multiple lines,
by setting SingleLine to true, the dot operator now also matches newline [75]. Furthermore, we
see that the Ignore attribute is true, as comments should not be included in the output of the lexer.

1 [. . . ]
2 {
3 "Name": "blockComment",
4 "PatternString": "/\\*.*\\*/",
5 "SingleLine": true ,
6 "Ignore": true
7 },
8 [. . . ]

Listing 8.3: Listing showing an extract of the tang.tokens.json file.

The responsibility of the Lexer class is to group the input characters into tokens corresponding to
their regular expression. Furthermore, the lexer will keep track of indentation levels, as indentation
is a part of the syntax in Tang, as explained in the paragraph ’Separate and Group Statements’ in
section 6.4. To keep track of the indentation we use a stack storing the nested indentation levels and
create indent or dedent tokens when the indentation level changes. This behaviour is difficult to
describe using a regular expression and is thus separate from the rest of the token configuration. The
concept and idea behind indent and dedent tokens is inspired by the Python language specification
in [76].
Listing 8.4 shows the essential parts of the Lexer without the analysis of indentation. As seen in
line 5 - 36 the Lexer works by iterating until it has analysed all characters in the source file. For
each iteration it finds the next token by iterating through the rules in the order of the configuration
file (tang.tokens.json) until it finds a regular expression that matches. If none of the token’s
regular expressions match, a LexicalException is thrown with information about the unexpected
characters, line, and column in the source file. Some tokens’ regular expression matches lexemes
that are a substring of another token’s lexemes e.g. the equal operator == can be matched as two
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assignment operators = and =. To prevent this the rules in tang.tokens.json has been ordered to
prioritise e.g. == over =.

1 [. . . ]
2 public IEnumerable <Token > Analyse(string source , string fileName)
3 {
4 [. . . ]
5 while (currentIndex < source.Length)
6 {
7 token = null;
8 [. . . ]
9 foreach (LexerRule rule in _rules)
10 {
11 match = rule.Pattern.Match(source , currentIndex);
12 if (match.Success && match.Index == currentIndex)
13 {
14 currentIndex += match.Value.Length;
15 token = new Token
16 {
17 Name = rule.Name ,
18 Value = match.Value ,
19 FileName = fileName ,
20 Row = row ,
21 Column = column
22 };
23 UpdateCounters(match , ref row , ref column);
24 if (!rule.Ignore)
25 {
26 yield return token;
27 }
28 break;
29 }
30 }
31
32 if (token == null)
33 {
34 throw new LexicalException(source.Substring(currentIndex ,

↪→ Math.Min(source.Length - currentIndex , 10)).Split(’
↪→ ’)[0] + "...", fileName , row , column);

35 }
36 }
37 [. . . ]
38 yield return new Token { Name = "eof", Value = "", Row = row ,

↪→ Column = column };
39 }
40 [. . . ]

Listing 8.4: Listing showing an extract from Lexer.cs which analyses the source file according to
the regular expressions for tokens.
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8.3 Parser

Before we describe the parser generator, we will describe the parser generated by it.
Based on the lexer described in section 8.2, we get a stream of tokens based on a source program.
In this section, we describe how the parser analyses the stream of tokens to validate the source
program according to the grammar of Tang shown in section 7.1.2. The output of the parser is
a parse tree also known as a concrete syntax tree (CST) representing the syntactical structure of
the source program, based on the derivations used to show that the input source program is in the
Tang language. The parser is based on the recursive descent parsing strategy (described in 5.6) as
the recursive descent approach is more straightforward to implement since the grammar of Tang is
LL(1). Another reason is that when implementing a parser generator (see section 8.3.1) it is easier
to read and debug the parser if it is written using the recursive descent approach in contrast to the
table-driven approach.

1 [. . . ]
2 public Compiler.Parsing.Data.OrExpression

↪→ ParseOrExpression(IEnumerator <Compiler.Parsing.Data.Token >
↪→ tokens)

3 {
4 Compiler.Parsing.Data.OrExpression node = new

↪→ Compiler.Parsing.Data.OrExpression (){ Name = "OrExpression"
↪→ };

5 switch(tokens.Current.Name)
6 {
7 case "numeral":
8 case "identifier":
9 case "(":
10 case "!":
11 case "register8":
12 case "register16":
13 case "true":
14 case "false":
15 node.Add(ParseAndExpression(tokens));
16 node.Add(ParseOrExpressionP(tokens));
17 return node;
18 default:
19 throw new UnexpectedTokenException(tokens.Current);
20 }
21 }
22 [. . . ]

Listing 8.5: Shows the parse method for parsing an OrExpression.

The recursive descent parser works by having a parse method for each non-terminal in the LL(1)
grammar for the Tang language shown in section 7.1.2. Because the grammar of Tang is LL(1) we
know which derivation to apply based on a look-a-head of one token. This is implemented using
a switch statement as shown in code listing 8.5. To determine which switch cases that correspond
to each derivation we use the elements of the predict set for the corresponding derivation. Predict
sets are described in section 5.3.4. For each derivation under the corresponding switch cases, there
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are calls for each symbol in the derivation.

Besides methods for parsing non-terminals, the parser contains a single method for parsing terminal
symbols as shown in code listing 8.6.

1 [. . . ]
2 public Compiler.Parsing.Data.Token

↪→ ParseTerminal(IEnumerator <Compiler.Parsing.Data.Token > tokens ,
↪→ string expected)

3 {
4 if(expected == "EPSILON")
5 {
6 return new Compiler.Parsing.Data.Token() { Name = "EPSILON" };
7 }
8 Compiler.Parsing.Data.Token token = tokens.Current;
9 if(token.Name == expected)
10 {
11 tokens.MoveNext ();
12 return token;
13 }
14 else
15 {
16 throw new UnexpectedTokenException(token);
17 }
18 }
19 [. . . ]

Listing 8.6: Shows the parse method for terminals.

The ParseTerminal method validates the current token with the expected value and moves to the
next token in the token stream unless the expected value is EPSILON i.e. the empty string.
To create the parse tree, each parse method returns a node representing the corresponding non-
terminal and inserts the nodes returned by sub calls for each symbol in the selected derivation. To
represent nodes in the parse tree, there are classes for each non-terminal in the CFG of Tang (see
section 7.1.2) an example is the Statement node in code listing 8.7. Terminals are represented using
the Token class.
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1
2 [. . . ]
3 public class Statement : Compiler.Parsing.Data.Node
4 {
5 [. . . ]
6 public override T

↪→ Accept <T>( Compiler.Parsing.Visitors.ProgramVisitor <T>
↪→ visitor)

7 {
8 return visitor.Visit(this);
9 }
10 [. . . ]
11 }
12 [. . . ]

Listing 8.7: Shows the class for Statement.

All classes for non-terminals are implemented using a generic visitor pattern as shown in the Accept
method in lines 6 - 9. For further elaboration on the visitor method see the theory in section 5.7.
The non-terminal classes accept a visitor by calling the visitor’s Visit method for the corresponding
non-terminal.
Implementing a recursive descent parser and classes for the Tang grammar, which contains about 70
non-terminals resulting in 70 parse methods with correct implementation of predict sets and calls for
symbols in each derivation, is a tedious and mechanical task. Based on the parser implementation
approach in section 8.1 we decided to implement a parser generator to generate the parser and
classes for the parse tree based on the grammar for Tang. The code listings 8.5, 8.6, and 8.7 are
therefre generated code by the ParserGenerator class with the grammar for Tang in 7.1.2 as input.
The implementation of the ParserGenerator is described in section 8.3.1.

8.3.1 Parser Generator
The ParserGenerator generates a recursive descent parser for a language based on its LL(1) gram-
mar. In this section we describe the essential parts of the ParserGenerator class with code listings
from the GenerateParserClasses method. The prototype is as follows.

1 public ClassType [] GenerateParserClasses(BNF bnf , string parserName ,
↪→ string dataNamespace , string parserNamespace)

To generate the parser we first need information about the predict set of the rules in the grammar.
To do this we implement a class BNFAnalyzer which analyses the first-, follow-, and predict-sets for
the grammar based on the definition of first- and follow-set in [77].

1 GrammarInfo grammarInfo = _bnfAnalyzer.Analyze(bnf);

To represent the parser we create classes ClassType, MethodType etc. to represent the overall struc-
ture of the generated C# code as shown.
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1 ClassType parserClass = new ClassType(parserNamespace , "public",
↪→ parserName , null)

2 [. . . ]
3 parserClass.Methods = new List <MethodType >();

The ParseTerminal method is first added to the parser (see listing 8.6 for the ParseTerminal
method).

1 MethodType parseTerminalMethod = new MethodType("public",
↪→ \$"{dataNamespace }.Token", "ParseTerminal")

2 [. . . ]
3 parserClass.Methods.Add(parseTerminalMethod);

Then, for each non-terminal in the grammar we add a parse method. The body statements of the
parse methods is structured as shown in listing 8.5.

1 foreach (var production in bnf)
2 {
3 MethodType parseMethod = new MethodType("public",

↪→ $"{dataNamespace }.{ production.Key}",
↪→ $"Parse{production.Key}")

4 [. . . ]
5 parserClass.Methods.Add(parseMethod);
6 }

Finally, we generate the UnexpectedTokenException class used in the parse methods and return it
together with the parser class.

1 classes.Add(parserClass);
2
3 ClassType unexpectedTokenException = new ClassType(parserNamespace ,

↪→ "public", "UnexpectedTokenException", "System.Exception")
4 [. . . ]
5 classes.Add(unexpectedTokenException);
6
7 return classes.ToArray ();

The ParserGenerator class also implements the methods GenerateSyntaxTreeClasses and Gener-
ateVisitorClasses for implementing the data structure and traversal of syntax trees based on a
grammar.

8.4 Tree Translation

In this section we describe in general how to translate a syntax tree in one language to another.
From the generated parser we are now able to build a concrete syntax tree (CST) based on a list
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of input tokens from the Lexer. Because a CST is built based on the LL(1) grammar for Tang in
section 7.1.2 it also reflects some of the limitations of using the LL(1) grammar such as large subtrees
for simple expressions and inverted associativity. To address these limitations we will translate the
CST to an AST following a structure similar to the abstract syntax for Tang in section 7.2. In
section 8.4.2 we describe the translation from CST to AST and in section 8.4.4 we describe the
translation from AST to C, using these methods.

8.4.1 Translating Syntax Trees in General
Translating a syntax tree in one language (domain tree) to a syntax tree in another language
(codomain tree) can be implemented in different ways.
One approach is to implement a translate method inside each class representing a node in the
domain tree which then returns the corresponding node in the codomain tree.
Another approach is to use the visitor pattern and implement a visitor that visits and translates
each node in the domain tree.
A third approach is to use pattern matching to translate certain patterns in the domain tree to the
corresponding structure of the codomain tree.
Choosing between these three approaches revolves around answering the question: “How should we
implement the translation between two languages’ syntax trees?”. We will answer this question later
but first we will try to answer the question: “What defines the translation between two languages’
syntax trees?”. If we can formalise the translation, then we might be able to generate code for the
translation between two languages like we generated the parser based on a formal syntax definition.

Defining Syntax Tree Translation

Inspired by structural operational semantics we will in this project define a new language for
translation of syntax trees between two languages. To formalise this translation we first describe
the possible domain trees and codomain trees. The possible domain trees are defined by the language
we are translating from (domain language), which for CFGs can be described as the following tuple
(for the description of the elements of the 4-tuple in a CFG see section 5.3.2):

Ld = (Vd,Σd, Rd, Sd)

The same applies for the language we are translating to (codomain language).

Lc = (Vc,Σc, Rc, Sc)

Let T(L) be set of all possible syntax trees for a language L i.e. trees derived using the language’s
CFG, we can then define the possible domain trees and codomain trees as the following.

Td = T (Ld)

Tc = T (Lc)

Let S(t) be the set of the tree t and all subtrees of t. Now we define the domain D(L) for a language
L as follows

D(L) =
⋃

t∈T (L)

S(t)

The translation can now be defined as a binary relation ->

-> ⊆ D(Ld)×D(Lc)
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Because some translations depend on more information than a single domain tree and a single
codomain tree, we can extend the translation to be a binary relation between a set of n number of
domain trees and a set of m number of codomain trees i.e.

-> ⊆ (D(Ld1), D(Ld2), . . . , D(Ldn))× (D(Lc1), D(Lc2), . . . , D(Lcm))

To define this relation, we use inference rules similar to the rules used in structural operational
semantics, which consists of a conclusion based on zero or more premises. To denote the rules
for the translation we modify the notation used in structural operational semantics to be able to
create a string based representation that we can parse and generate code from. This means that
we remove the fraction notation and instead write the conclusion of the rule in the top followed by
the premises with one level of indentation as shown for the translation rule in listing 8.10.

To understand the syntax of the translation rules we will present a small example with the fol-
lowing domain language.

1 Program -> Add
2 Add -> numeral AddP
3 AddP -> + numeral

Listing 8.8: Example of a domain language named Program.

And the codomain language for this example is as follows.

1 AST -> Add
2 Add -> numeral + numeral

Listing 8.9: Example of a codomain language named Program.

Based on these two languages we can now use the translation rules’ syntax (see appendix H for the
CFG) to define rules for the translation.

1 ->:a := Program -> AST
2
3 Program[Add:e1] ->:a AST[e2]
4 e1 ->:a Add:e2
5
6 Add[numeral:e1 AddP[+ numeral:e2]] ->:a Add[e3 + e4]
7 e1 ->:a numeral:e3
8 e2 ->:a numeral:e4

Listing 8.10: Example of a translation rules from Program to AST.

In listing 8.10 line 1 we first define the domain and codomain languages for the translation relation
->:a. In line 3 we define the conclusion for the first rule. This states that a Program node with an
Add node as child can be translated to an AST node if the premise in line 4 holds.
The premise states that the Add node of the Program can be translated to an Add node in the
codomain language. To make this possible we define a second rule in line 6 - 8 describing the
translation of an Add node in the same manner as the first rule. Notice the use of brackets to
denote children of a node as well as colon followed by a name to distinguish nodes and relations.
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Generating a Syntax Tree Translator

Based on the notation in listing 8.10, we will now implement a TranslatorGenerator class that can
generate a translator based on the translation rules.
We are now trying to answer the question: “How should we implement the translation between two
languages’ syntax trees?”. The idea behind the implementation is that we parse the rules and based
on these rules generate a translator class with methods for each translation.
To parse the rules, we create a LL(1) grammar for the translation language as shown in appendix H
and use the ParserGenerator class to generate a parser for the rules. From this, we can get a tree
structure of the rules that we can generate code based on. For instance if we have the translation
relation ->:a from listing 8.10, we generate a method called Translatea. To prevent a translation
with many rules to become a large method, we use static overloading to group rules into methods
with same top level node types.
The second rule in listing 8.10 defines a translation between two trees, as defined by the arrow ->:a,
and will fall into a method with the prototype Lc.node Translatea(Ld.Add add) where Lc is the
namespace of the classes for the codomain tree and Ld is the namespace of the classes for the domain
trees. These classes can be generated using the ParserGenerator class’ GenerateSyntaxTreeClasses
method based on grammars for the domain and codomain languages in BNF.
Inside each translate method we generate code for all the translation rules with the same top level
node type. The code for each rule consists of three parts.
The first part checks that the input domain trees follow the pattern in the rule. For the Add rule
in listing 8.10 we need to check that the add parameter contains a numeral as first child and an
AddP as second child with a + as first child and a numeral as second child.
The second part is to check that all the premises hold. We do this by calling the translation
method for the premise translation with the left hand side of the premise and then check if the
result matches the pattern of the right hand side of the premise.
The third and final part of the code for each rule is to return the tree at the right hand side of the
conclusion if all premises hold. The code structure to be generated for the rule in listing 8.10 can
be seen in listing 8.11.
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1 public Lc.Node Translatep(Ld.Add add)
2 {
3 if(add != null && add.Name == "Add" && (add.Count == 2 && add[0]

↪→ != null && add [0]. Name == "numeral" && add[1] != null &&
↪→ add [1]. Name == "AddP" && (add [1]. Count == 2 && add [1][0] !=
↪→ null && add [1][0]. name == "+" && add [1][1] != null &&
↪→ add [1][1]. name == "numeral")))

4 {
5 Lc.Node e3 = Translatea(add[0] as Ld.Token);
6 if(e3 != null && e3.Name == "numeral")
7 {
8 Lc.Node e4 = Translatea(add [1][1] as Ld.Token);
9 if(e4 != null && e4.Name == "numeral")
10 {
11 return new Lc.Add(false) { e3 as Lc.Token , new

↪→ Lc.Token() { Name = "+", Value = "+" }, e4 as
↪→ Lc.Token };

12 }
13 }
14 }
15 return null;
16 }

Listing 8.11: Shows code to be generated for the add node rule in listing 8.10.

As shown in listing 8.11 the rule’s use of aliases to refer nodes in the tree is translated to a path
of child selectors like the numeral e2 which is referenced in the generated code as add[1][1] i.e.
the second child of the second child in the Add domain tree. In the following sections we will show
how we can use translation rules to implement the parse tree to AST translation and AST to C
translation.

8.4.2 Parse Tree to AST Translation
In order to show the translation from a parse tree to an AST we will, as an example, show how the
parse tree for the integer expression: 1 + 2 + 3, is translated into its corresponding AST by using
the syntax described in section 8.4.1.

Figure 8.2 shows the AST for the integer expression: 1 + 2 + 3 and figure 8.1 shows its cor-
responding parse tree. As it can be seen on these two figures the AST is a restructered version of
the parse tree where the unnecessary nodes are removed. Furthermore, the AST in figure 8.2 has
the right associativity where the numeral nodes for lexemes 1 and 2 are further down the parse
tree than the numeral node for lexeme 3 which is not the case for the parse tree in figure 8.1. Note
that a dashed line between two nodes indicates that for some ancestor node it has somewhere in its
sub-tree a particular descendant node.
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AddSubExpression

AddSubExpressionP

AddSubExpressionP

AddSubExpressionP

EPSILON

MulDivExpression

numeral:3

+

MulDivExpression

numeral:2

+

MulDivExpression

numeral:1

Figure 8.1: Extract of the parse tree for 1 + 2 + 3.

IntegerExpression

AddExpression

IntegerExpression

numeral:3

+IntegerExpression

AddExpression

IntegerExpression

numeral:2

+IntegerExpression

numeral:1

Figure 8.2: AST for: 1 + 2 + 3

In order to translate the parse tree in figure 8.1 to the AST in figure 8.2 a set of translation rules
are defined using the syntax described in section 8.4.
The first rule applied to the tree in figure 8.1 is the rule shown below in listing 8.12, which states that
an AddSubExpression can be converted into an AST IntegerExpression if and only if the premises
of the rules hold, which states that both MulDivExpressions can be evaluated as IntegerExpression
↪→ s. As we can see the MulDivExpression is first evaluated and then inserted into the tree obtained
by evaluating the AddSubExpressionP subtree.

1 [. . . ]
2 [AddSubExpression[MulDivExpression:expr1 AddSubExpressionP:expr2]

↪→ SymbolTable:s] -> [intExpr2 <- intExpr1 s]
3 [expr1 s] -> [IntegerExpression:intExpr1 SymbolTable]
4 [expr2 s] -> [IntegerExpression:intExpr2 SymbolTable]
5 [. . . ]

Listing 8.12: AddSubExpression translation rule

To evaluate MulDivExpression we search for a MulDivExpression rule that matches our tree-
pattern., which is the rule shown below in listing 8.13. For simplicity figure 8.1 only shows a
part of the actual parse tree for the expression 1 + 2 + 3. The rule states that we obtain the tree
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by evaluating the expression, expr, which in this case is a single numeral node containing lexeme 1.

1 [. . . ]
2 [MulDivExpression[PowExpression:expr MulDivExpressionP[EPSILON ]]

↪→ SymbolTable:s] -> [expr1 s]
3 [expr s] -> [*: expr1 SymbolTable]
4 [. . . ]

Listing 8.13: MulDivExpression translation rule

As the node found by evaluating the MulDivExpression sub-tree has to be inserted into the tree
we obtain by evaluating AddSubExpressionP we now try to find a rule to match the tree de-
noted by topmost AddSubExpressionP in figure 8.1. One of the rules for AddSubExpressionP states
that if the node AddSubExpressionP has the following three children: +, MulDivExpression’, and
’AddSubExpressionP’, and if both the MulDivExpression and the AddSubExpressionP node can eval-
uate to IntegerExpressions, we can obtain an IntegerExpreesion tree as denoted in line 2 of listing
8.14 which corresponds to the AST in figure 8.5.

1 [. . . ]
2 [AddSubExpressionP [+ MulDivExpression:expr1 AddSubExpressionP:expr2]

↪→ SymbolTable:s] -> [intExpr2 <-
↪→ IntegerExpression[AddExpression [% IntegerExpression + intExpr1 ]]
↪→ s]

3 [expr1 s] -> [IntegerExpression:intExpr1 SymbolTable]
4 [expr2 s] -> [IntegerExpression:intExpr2 SymbolTable]
5 [. . . ]

Listing 8.14: AddSubExpressionP translation rule

In order to obtain this tree we must first evaluate the MulDivExpression, which evaluates to a
numeral node in the AST-tree more specifically the numeral:2 node. As denoted by the syntax,
IntegerExpression[AddExpression[%IntegerExpression + intExpr1]] s], in listing 8.14 we can
now make a IntegerExpression tree corresponding to the tree shown below in figure 8.3.

IntegerExpression

AddSubExpression

IntegerExpression

numeral:2

+%IntegerExpression

Figure 8.3

However, as denoted by the ’<-’ arrow in listing 8.14 the tree in figure 8.3 has to be inserted into
the tree obtained by evaluating the AddSubExpressionP subtree denoted expr2 in listing 8.14 which
is done by pattern matching on the rule in listing 8.15 which gives the tree shown in figure 8.4.
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1 [. . . ]
2 [AddSubExpressionP [+ MulDivExpression:expr1

↪→ AddSubExpressionP[EPSILON ]] SymbolTable:s] ->
↪→ [IntegerExpression[AddExpression [% IntegerExpression + intExpr1 ]]
↪→ s]

3 [expr1 s] -> [IntegerExpression:intExpr1 SymbolTable]

Listing 8.15: AddSubExpression translation rule

IntegerExpression

AddExpression

IntegerExpression

numeral:3

+%IntegerExpression

Figure 8.4

After having obtained the tree in figure 8.4, the premises of the rule shown in listing 8.14 are
fulfilled and we now insert the tree shown in figure 8.3 into the placeholder denoted by the
%IntegerExpression node in figure 8.4 which gives the tree in figure 8.5.

IntegerExpression

AddExpression

IntegerExpression

numeral:3

+IntegerExpression

AddExpression

numeral:2+%IntegerExpression

Figure 8.5

The last thing to do in order to obtain the desired AST in figure 8.2, is, in accordance with the rule
in listing 8.12, to translate the numeral ’1’ to an IntegerExpression and insert into the placeholder
in figure 8.5.
The type and scope checking of Tang is also done in the parse-tree to AST conversion which we
describe in section 8.4.3.

8.4.3 Scope and Type Check
In this section we will show how type and scope checks are conducted based on the translation
syntax in section 8.4.1.
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Figure 5.2 in section 5.5.1 shows how a source program is translated into its corresponding object
code. The figure illustrates the parser creating an AST, which is type checked during the construc-
tion of a decorated abstract syntax tree.
To do the type checking using the translation syntax, we will for the compiler of Tang do the type
and scope checking during the parse-tree to AST conversion which ensures that type and scope
errors are found before traversing the AST and generating AVR C code.
During scope and type checking we need a symbol table to store information in. We define a
tree-structure for such symbol tables in BNF (see symboltable.bnf in electronic appendix).

Scope check

In this section we will provide examples showing how scope checking is handled in the parse-tree
to AST translation.
The rule in listing 8.16 will translate a parse tree into an AST. To do so, we must first scan the
input program to find all the functions that have been declared in Tang, as we did in the type
system in section 5.4.2.
Line 2 in listing 8.16 shows how this is done by translating a parse-tree and an empty symbol table
into a symbol table that contains all function declarations found in the parse-tree. The translation-
rule works like the auxiliary scan functions in the type system in table 7.25 and goes through every
node in the parse tree to find a function declaration and inserts it into the symbol table.
When all function declarations have been found and no error has occurred, a symbol table denoted
s is returned which we, together with the parse-tree in listing 8.16, will translate to an AST as
explained in section 8.4.2. The reason for inserting the return type, identifier, and parameters of
each function into a symbol table is because of the scope-rules of Tang (see section 6.5), which
specifies that a function can be called before it is used and we must therefore be able to check if
there exists a function in the program that has the same return type, identifier, and parameters for
any function call in a Tang program.

1 Program:p ->:toAST ast
2 [p SymbolTable [% Declarations[EPSILON ]]] ->:scan SymbolTable:s
3 [p s] -> [AST:ast SymbolTable]

Listing 8.16:

The type system in section 5.4.2 implies that an identifier cannot be declared in the same scope
twice. The translation rule in listing 8.17 shows how to make this scope check by showing an
example for boolean declarations.
When a boolean declaration is translated into an AST-tree we check that the identifier has not
already been declared by making a look-up in the symbol-table of the current scope. The check
can be seen on line 6 in listing 8.17, where we try to evaluate an identifier and a symbol table to
a syntax tree, that consists of a declaration node with an EPSILON node. This is a look-up in the
symbol table where we ask if s is undefined. If it is, we know that s is not defined in this, or
any enclosing scopes and the boolean declaration is therefore type correct and we can update the
symbol table where we insert the type t2 and the name id2 as well as a placeholder tail declaration,
so that later declarations can be added onto the end later.
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1 [IdentifierDeclaration[BooleanType:t identifier:id
↪→ Definition[newline ]] SymbolTable:s] -> [BooleanDeclaration[t1
↪→ id1] s <- Declarations[Declaration[Variable[Type[t2] id2]]
↪→ %Declarations[EPSILON ]]]

2 t ->:toAST BooleanType:t1
3 t ->:toSym BooleanType:t2
4 id ->:toAST identifier:id1
5 id ->:toSym identifier:id2
6 [id s] ->:lookup Declaration[EPSILON]

Listing 8.17:

Another example of scope rules in Tang is a while statement in the sense that any variables declared
inside the statement are not accessible outside of it. Listing 8.18 shows the translation rule for while
statements. Notice how the symbol table s passed to the rule, is the same symbol table as is returned
on the right-hand-side on line 1. s is passed to the rules that translate expr and stms, but the
resulting symbol tables from these rules are not captured and thus has no effect on the resulting
symbol table.

1 [WhileStatement[while ( Expression:expr ) indent Statements:stms
↪→ dedent] SymbolTable:s] -> [WhileStatement[while ( boolExpr )
↪→ indent stm dedent] s]

2 [expr s] -> [BooleanExpression:boolExpr SymbolTable]
3 [stms s] -> [Statement:stm SymbolTable]

Listing 8.18:

Type Check

In this section we will show how type checks are conducted in the translation from a parse-tree to
a AST.
Listing 8.19 shows the type check for an integer expression which states that if the two integers
denoted e1 and e2 can be converted to integer types then the type of the entire expression is the
largest of the two types, which corresponds to the [AddOperation] type rule we defined for the type
system in table 7.22.

1 [IntegerExpression[AddExpression[IntegerExpression:e1 +
↪→ IntegerExpression:e2]] SymbolTable:s] ->:type t3

2 [e1 s] ->:type IntType:t1
3 [e2 s] ->:type IntType:t2
4 [t1 t2] ->:largest IntType:t3

Listing 8.19:

Another example of type checking is checking if the actual parameters of a function correspond to
the formal parameters. Listing 8.20 shows how this is checked by making a look-up in the symbol
table on line 2 that tries to find a function that matches the prototype of the called function. If this
premise hold then the formal parameters denoted p1 and the actual parameters are evaluated with
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the transition methods for params to see if the actual parameters match the formal parameters. If
it does, an expression list is returned and the parse-tree for the IdentifierStatement is evaluated
to an abstract syntax tree for a function call as can be seen on on line 1 in listing 8.20.

1 [IdentifierStatement[identifier:id IdentifierStatementP [(
↪→ ExpressionList:p )]] SymbolTable:s] -> [Call[id1 ( p2 )] s]

2 id ->:toAST identifier:id1
3 [id s] ->:lookup Declaration[Function[ReturnType identifier

↪→ Parameters:p1]]
4 [p p1 s] ->:params ExpressionList:p2

Listing 8.20:

8.4.4 AST to C Syntax Tree Translation
Now that we know how a parse tree is translated into an AST, we will briefly describe how an AST
is translated into a syntax tree for AVR C code, which we can traverse using a TextPrintVisitor
in order to obtain the target AVR C program. This translation corresponds to the code generation
phase of the compiler. We will expand the example in section 8.4.2 to be a fully valid Tang program
where the integer expression is assigned to a int8 variable as shown below in listing 8.21.

1 int8 a = 1 + 2 + 3

Listing 8.21: AddExpression sample

AST

eofGlobalStatement

Statement

IntegerDeclarationInit

IntegerExpression

AddExpression

.[numeral:3IntegerExpression

numeral:2numeral1

=identifierint8IntType

Figure 8.6: AST for listing 8.21

Figure 8.6 shows the parse tree for the statement in listing 8.21 whereas figure 8.7 shows the essential
parts of the corresponding syntax tree for AVR C code.
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The first thing to note is that an AST is translated into a syntax tree that contains function sub-
tree with the main function. This is illustrated by the rule in listing 8.22 for the AST of an empty
program which only contains an ’end of file’ (eof) node:

1 AST[eof] -> C[Declaration[EPSILON] Function[EPSILON ]]

Listing 8.22: AST to C rule for an AST tree contain the eof node

In comparison to Tang then AVR C does not allow statements in the global scope. This challenge is
solved in the code generation phase by inserting translated GlobalStatements into the main function
in the target program. To still enable global variables then global declarations is translated into the
global scope of the target program. Another difference is that functions must be declared before
used in C whereas in Tang functions are allowed to be called before declaration. To implement a
translator to do this we define the translation relation to translate a AST to three C syntax trees
containing the declarations, functions, and statements. The translation rules can be seen in the file
’ast-c.translator’ in electronic appendix.

C

Function

}Statement

IntegerDeclarationInit

Subtree for 1+2+3=identifierIntType

longsigned

Declaration

EPSILON

{)(mainType

void

Figure 8.7: Syntax sub tree for the generated C code for the code in listing 8.21

The figure above illustrates some of the key differences between the AST and the syntax tree for
the corresponding AVR C code. For instance we see that the AST in figure 8.6 has all its Tang
code in a sub-tree of a GlobalStatement whereas the syntax tree in figure 8.7 has a subtree for
declarations and functions while the functions subtree will include subtrees for each function in the
program including the main function. When we translate an AST to a syntax tree containing AVR
C code we must ensure that constructs like interrupts are declared in the global scope, as AVR C
requires, which we do by evaluating the interrupts as global statements and then inserting them as
a part of the declaration subtree.

8.5 Not Implemented Features

In the implementation of Tang, we have implemented a subset of the features, described in the
language specification (chapter 7). Two of the features that have not been included are signed
integer overflow and division by 0. These were not included since we, in the design of Tang, have
not specified any mechanism such as exception handling that allows us to deal with run-time errors,
as this was thought of too late in the project. What currently happens with integer overflow and
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division by 0 is therefore determined by the compiler for AVR C. As division by zero is also undefined
in C, any calculation that uses a division by zero results in undefined behaviour [78].
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Test

The purpose of this section is to test Tang in accordance with the test plan defined in section 2.6.
This means that we will be conducting four types of tests: unit tests, integration tests, verification
tests, and language evaluation tests which are described in section 9.1, 9.2, 9.3, and 9.4, respectively.
The unit and integration tests will be conducted using the testing framework xUnit, since xUnit
supports data driven testing and supports Windows, Linux, and Mac and thus will run on all
group-members’ computers without issues [79].
In order to document the tests conducted in this project we will include code snippets that show
excerpts of different tests and how we use them to examine if the compiler works as we expect.

9.1 Unit Test

In this section we will describe how we use unit tests to test the lexer, parser, AST, and code
generator phases of the compiler. The unit tests are used to identify bugs and prevent unnoticed
bugs to occur due to code changes.
To illustrate how each of the phases of the compiler works, we will, besides conducting different
tests, walk through the program written in listing 9.1 and show snippets of the output of each of
the four phases of the compiler.
We will not do extensive testing for the parse tree, AST, and code generation, since testing these
are tedious and prone to errors, as the trees which we we compare them to have to be written
manually. Instead, we will focus on conducting integration tests for the program as a whole. We
do this in section 9.2 where we test if the result of the compilation is as expected.

Lexer
To test the tokens generated by the lexer (described in section 5.5.1), we first need a test file. The
test file can be seen in listing 9.1.

1 int8 a = 1 + 2 + 3

Listing 9.1: The AddExpression sample from section 8.4.

Here we can see that int8 is an int8 type according to the regular expressions in tang.tokens.json.
An extract from tang.tokens.json showing the regular expression for this integer type is shown in
listing 9.2. The reason for the last part of the pattern string: (?![a− zA−Z_0− 9]) is to help the
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lexer know that a statement such as int8varName is a variable name and not a int8 type.

1 [. . . ]
2 "Name": "int8",
3 "PatternString": "int8 (?![a-zA-Z_0 -9])"
4 [. . . ]

Listing 9.2: Extract from tang.tokens.json showing the regular expression for int8.

Knowing in advance which tokens exist in our test file allows us to assert that they are correct.
This is shown in listing 9.3.

1 [. . . ]
2 // Initialise Lexer
3 Lexer l = new Lexer(AppContext.BaseDirectory +

↪→ "\\ TestFiles \\ Tokens.cfg.json");
4
5 // Read from test file
6 IEnumerable <Token > tokens =

↪→ l.Analyse(File.ReadAllText(AppContext.BaseDirectory +
↪→ "\\ TestFiles \\ AddExpression.tang"));

7 [. . . ]
8 Assert.AreEqual(tokens.Count(), 10);
9 [. . . ]
10 Assert.AreEqual(tokens.ElementAt (2).Name , "=");
11 Assert.AreEqual(tokens.ElementAt (8).Name , "newline");
12 [. . . ]

Listing 9.3: Extract from LexerTests.cs showing how we check if our results are correct.

In some cases the lexer might see input such as ===. In a case like this, the expected behaviour is to
first match an equality token (==) followed by an assignment token (=). The same applies for e.g.
the string (2test), where we first want to match a numeral followed by an identifier. Tests covering
this are shown in listing 9.4.

1 [. . . ]
2 IEnumerable <Token > tokens = l.Analyse("=== 2test");
3
4 Assert.AreEqual(tokens.ElementAt (0).Name , "==");
5 Assert.AreEqual(tokens.ElementAt (1).Name , "=");
6 Assert.AreEqual(tokens.ElementAt (2).Name , "numeral");
7 Assert.AreEqual(tokens.ElementAt (3).Name , "identifier");
8 [. . . ]

Listing 9.4: Test method to test that tokens are split correctly by the lexer.

For error messages we want to specify exactly where the error occurs. Therefore, we choose to add

104



Chapter 9. Test 9.1. Unit Test

row and column numbers as attributes to tokens. This needs to be tested as well. This is done by
asserting that the row and column attributes are what we know them to be. An extract from a test
for tokens attributes is seen in 9.5.

1 [. . . ]
2 // ’=’ should be at row 0 and column 8 since there are 8 symbols until

↪→ ’=’ is hit
3 Assert.AreEqual(tokens.ElementAt (2).Row , 0);
4 Assert.AreEqual(tokens.ElementAt (2).Column , 8);
5 [. . . ]

Listing 9.5: Test extract showing how we test token attributes.

Parser
The parser takes a stream of tokens as an input, and generates a tree of token objects. To test
that the parser has successfully created a valid tree, a simple stream of tokens is created from the
AddExpression program seen in listing 9.1.

To test the parser, tokens are created by using the Lexer, as seen in listing 9.6. These tokens
are manually inspected, and inserted as a string. Hereafter, the ParseProgram method from the
parser is called with the tokens as input, which produces a parse tree. To ensure this parse tree is
generated correctly, a parse tree is also made by hand and the equivalence of these two is asserted
by calling a helper method, called TreeAsserter, that traverses two trees and checks if they are
equal.

105



Chapter 9. Test 9.1. Unit Test

1 // Tokens for program AssExpression. These can are derived from the
↪→ unit test for the lexer.

2 string [] testTokens = { "int8", "identifier", "=", "numeral", "+",
↪→ "numeral", "+", "numeral", "newline", "eof"};

3
4 var tokenEnumerator = testTokens.Select(t => new Parsing.Data.Token()

↪→ { Name = t }).GetEnumerator ();
5
6 tokenEnumerator.MoveNext ();
7
8 ProgramParser pp = new ProgramParser ();
9
10 var parseTree = pp.ParseProgram(tokenEnumerator);
11
12 // Build parse tree manually for the AddExpression.tang program , kfg

↪→ edit is used to visualise how it will look
13 var parseTreeManual = new Parsing.Data.Program(true)
14 [. . . ]
15 TreeAsserter(parseTree , parseTreeManual);

Listing 9.6: The initialising of the token list.

An extract from the manual creation of the parse tree can be seen in listing 9.7.

1 var parseTreeManual = new Parsing.Data.Program(true)
2 {
3 new Parsing.Data.GlobalStatements(true)
4 {
5 [. . . ]
6 },
7 new Parsing.Data.Token(){ Name = "eof" }
8 };

Listing 9.7: A part of the reference tree, showing the nesting of the nodes.

In listing 9.8, the TreeAsserter helper method can be seen. If any discrepancy between the two
trees is found, the parser test will fail. The method compares the name of each token as to test for
both errors regarding individual nodes, and the structure overall.
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1 public void TreeAsserter(Parsing.Data.Node node , Parsing.Data.Node
↪→ nodeTest)

2 {
3 Assert.AreEqual(node.Name , nodeTest.Name);
4
5 if(node is Parsing.Data.Token){}
6 else
7 {
8 Parsing.Data.Node[] nodeChildren =

↪→ node.Nodes <Parsing.Data.Node >();
9 Parsing.Data.Node[] nodeChildrenTest =

↪→ nodeTest.Nodes <Parsing.Data.Node >();
10 for (int i = 0;i < nodeChildren.Length; i++)
11 {
12 TreeAsserter(nodeChildren[i], nodeChildrenTest[i]);
13 }
14 }
15 }

Listing 9.8: The recursive method used to compare and assert each node in the trees.

AST
As abstract syntax trees grow large even for minor programs, it is difficult to assert equality between
a generated AST and an AST written manually. However, two minor unit tests for this part of the
compiler have been written. A small program written in Tang is put through the initial phases of
the compiler until the conversion to AST and a corresponding AST is created manually. Hereafter,
a helping method is called (see listing 9.9), which walks each tree and asserts the equality of each
corresponding node. The input program written in Tang can be seen in listing 9.1.
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1 public void TreeAsserter(AST.Data.Node node , AST.Data.Node nodeTest)
2 {
3 Assert.AreEqual(node.Name , nodeTest.Name);
4
5 if (node is AST.Data.Token) { }
6 else
7 {
8 AST.Data.Node[] nodeChildren = node.Nodes <AST.Data.Node >();
9 AST.Data.Node[] nodeChildrenTest =

↪→ nodeTest.Nodes <AST.Data.Node >();
10 for (int i = 0; i < nodeChildren.Length; i++)
11 {
12 TreeAsserter(nodeChildren[i], nodeChildrenTest[i]);
13 }
14 }
15 }

Listing 9.9: The helper method used to assert tree equality by traversing each tree and comparing
nodes.

To write an AST manually, the tokens produced from the Tang program are identified. The BNF
of the AST is then used to write the tree. Although this is a time consuming process, it is doable
and is important to ensure the correctness of the program to AST translator. The AST equivalent
to the Tang program in listing 9.1 can be seen in appendix K.

Code Generator
The code generator runs by calling the Translate method in the ASTToCTranslator class. There
are several Translate methods depending on which type of translation is needed. Which method
is run is based on the parameters in the method call.
The code generator takes as input an AST and produces a tree with AVR C code as its leaves.

To test the code generator, a tree is first created by going through the compiler’s phases with
an input program. This example will, like the other unit tests, use the AddExpression program,
which can be seen in listing 9.1. A tree is then written by hand by using the logic of the C BNF
determined beforehand and the equality of the two trees is determined by using the TreeAsserter
method which is also described in listing 9.8.
A code extract of how the AVR C tree is generated by hand can be seen in listing 9.10.

108



Chapter 9. Test 9.2. Integration Test

1 var cExpected = new C.Data.C(true)
2 {
3 new C.Data.Declaration(true)
4 {
5 [. . . ]
6 },
7 new C.Data.Function(true)
8 {
9 [. . . ]
10 }
11 };

Listing 9.10: Listing showing the root of the AVR C tree along with the first two children.

9.2 Integration Test

In this section we will be conducting the integration test of Tang as described in the test plan in
section 2.6. In our integration tests we will use data-driven testing [80] since we want to put some
code through the compiler and compare the outputted C code to some previously compiled C code,
which has been checked for errors manually. This means that if we have to write a new test for
each file, we would have a lot of tests where the only difference is the two files they read.
xUnit enables us to call tests with parameters defined elsewhere by some code, which means that
we can make any number of different tests by making one and using the input-files as parameters.
The areas of the compiler tested in our integration test includes:

• Types

• Operators

• Declaration and assignment, both in one line and separately

• Control statements, including: for-loops and if-statements

• Direct bit operations

• Throw exception when necessary, e.g. when a reserved keyword is used

• Functions

• Scope

• Type conversion
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1 [Theory]
2 [MemberData("FilesInTang", MemberType = typeof(CompilerTestsData))]
3 // Method to test that all programs compiles correctly in Tang folder
4 public void ProgramsCompileCorrectly(string file)
5 {
6 TangCompiler tc = new TangCompiler ();
7 string expected =
8 File.ReadAllText(file + ".c").Replace("\r","");
9 string actual =
10 tc.Compile(file , "tang.tokens.json").Replace("\r", "");
11 Assert.Equal(expected , actual);
12 }

Listing 9.11: Extract from CompilerTests.cs showing how we ensure that the programs we designed
to compile correctly, compiles correctly

Listing 9.11 shows the test method where we test all the programs we wrote specifically to pass the
compiler in a certain way to test the different parts of the compiler. This method works by defining
some MemberData to be passed to this method at run-time. This MemberData consists of a class
that we wrote, which returns all files in "Testfiles/tang". xUnit then calls the method with each
file as parameter and the functions check that the files compile correctly. When the programs are
compiled, the method checks the output C code against some C-files also located in a folder named
tang. These files have been compiled before and inspected by members of the group to ensure that
the files are compiled correctly. This means that if there are any differences between the compiled
code and the .c file, the test will fail, since the test cannot determine if the change is essential and
will change the behaviour of the program.

1 [Theory]
2 [MemberData("FilesFailingInTang", MemberType =

↪→ typeof(CompilerTestsData))]
3 // Method to test that all programs does not compile correctly in Fail

↪→ folder
4 public void ProgramsDoesntCompileCorrectly(string file)
5 {
6 TangCompiler tc = new TangCompiler ();
7 Assert.ThrowsAny <Exception >(() => tc.Compile(file ,

↪→ "tang.tokens.json"));
8 }

Listing 9.12: Extract from CompilerTests.cs testing if the files designed to fail, actually fail.

Listing 9.12 also uses MemberData as listing 9.11. This test gets all files in "Testfiles/fail", which are
all the files that are designed specifically to fail for different reasons, like using reserved keywords
or passing the wrong type of arguments. If a compilation fails, the TangCompiler will throw an
exception, which the Assert catches. If no exception is thrown, the test fails.
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1 public static IEnumerable <object[]> FilesInTang
2 {
3 get {
4 List <object[]> data = new List <object []>();
5 var files = Directory.GetFiles("Testfiles/tang/");
6 foreach(string file in files) {
7 if(file.EndsWith(".tang"))
8 data.Add(new object []{ file});
9 }
10 return data;
11 }
12 }

Listing 9.13: Extract from MemberData class, generating the parameters for listing 9.11

Listing 9.13 is the method that generates the data for listing 9.11. The method returns a list of all
files in the directory "Testfiles/tang" and returns it. A similar method is created for listing 9.12.

9.3 Verification Test

In this section, we will conduct the verification tests of Tang which are explained in section 2.6. In
order to do so, we will show code excerpts of how we test some of the functionality of Tang. All
the sample files can be found in the electronic appendix in the ’samples’ directory.

Register test
To test registers in Tang we write a sample program in Tang.

1 register8 (36) {5} = true
2 register8 (37) {5} = false
3 int32 c
4 c = 0
5 while(true)
6 if(c == 300000)
7 register8 (37) {5} = !register8 (37) {5}
8 c = 0
9 c = c + 1

Listing 9.14: A register test written in Tang.

First two registers are initialised at the addresses 36 and 37. The first register is the Data Direction
Register for PORTB, the DDRB register, which we know from the datasheet for the ATmega328P
(see [20]) and the other register is the PORTB register itself.
In the first register we set the fifth bit to true to indicate that we want data to be going OUT on
pin PB5 (Port B 5), which is connected to the digital pin 13 and the onboard LED on the Arduino
Nano [20]. We then set the fifth bit in PORTB to false to indicate that we want that pin to be low.
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We then enter our while-loop which counts to 300.000 and flips the value of the fifth bit in the
PORTB register. This causes the pin to be connected to 5V and the LED connected to it, to light up
and after another 300.000 iterations, turn off again. The reason for the counter counting to 300.000
is because it takes about 0.5 seconds and slows down things enough for us to actually be able to
see that the LED is turning on and off.
A set of standard libraries are implemented for Tang. To test the functionality of the standard
libraries, a program is written, which utilises it.

1 import Nano
2
3 int16 dutyCycle = 40
4 int32 counter = 0
5 while(true)
6 counter = counter + 1
7 dutyCycle = counter %511
8 if(dutyCycle >= 256)
9 dutyCycle = 255 - dutyCycle %255
10 SetFastPWMPin6(dutyCycle)
11 delay (5)

Listing 9.15: An example, which uses the standard library Nano Tang.

As seen in listing 9.15, the program imports the file Nano, and uses the setFastPWMPin6 func-
tion, which cycles through the PWM of a pin, alternating between an LED being on and off in this
example.

Both programs produced the expected result, where the first made the LED blink, and the second
one made it oscillate between on and off [81].

9.4 Language Evaluation Test

In this section, the information gathered in section 3.2, will be evaluated alongside Tang. To
properly conduct this evaluation Tang has to be exposed to the same analysis as the previously
mentioned languages in section 3.2.
To evaluate the languages we use the test plan in section 2.6.

The Blink Program in Tang
To evaluate the Tang language, the program blink will be evaluated, and compared to the same
program, written in other languages.
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1 register8 ddrb = register8 (36)
2 register8 port = register8 (37)
3 ddrb {5} = true
4 port {5} = true
5 int32 counter = 0
6 while(true)
7 if(counter == 100000)
8 counter = 0
9 port {5} = !port {5}
10 else
11 counter = counter + 1

Listing 9.16: The blink program written in Tang.

1 import Nano
2 PinModeD(6, OUTPUT)
3 while(true)
4 delay (500)
5 DigitalFlip (6)

Listing 9.17: The blink program written in Tang, using the standard library written for it

The blink example in listing 9.16 makes an on-board LED blink using only core functionality in
Tang. The specifics of how it functions, are described in 9.3, with the register test, which functions
in the same manner.
A library for Tang could be included in the blink example, shown in listing 9.17, significantly
shortening and simplifying the program. The reason for not doing this is, that it would not make
for a fair comparison as not all the other languages that we evaluate have a library that allows the
programmer to e.g. set the output of a pin, which would cause the readability and writability of
the programs that uses these libraries to be higher than those that do not.

Readability
For the evaluation of the Arduino language we have decided that the Arduino.h file, which can be
found in [82] is part of the Arduino language as the user of the Arduino language does not have
to include this file themselves. However, it is automatically included during processing as can be
seen in listing 3.2. Because of the Arduino.h file, the Arduino language has a lot of meaningful
statements, such as the delay(1000) statement, seen in listing 3.1, the readability of the Arduino
language is relatively high in comparison to languages like the AVR C language that do not have
similar constructs as a part of the language in accordance with the theory for readability in section
5.1.1.

However, since we see the Arduino.h file as a part of the language this also adds to the total
number of constructs of the language, thereby decreasing the overall simplicity of the language (see
section 5.1.1).
We have weighted the readability, added by the expressivity of the constructs, higher than the
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readability, decreased by the increased number of constructs which make the Arduino language
more readable, than e.g. the AVR C language that does not have these expressive constructs.

As for the AVR assembler the different constructs of the language used in the blink example in
listing 3.4 are not meaningful e.g. the constructs used for setting a specific pin as an output pin.
Furthermore, the orthogonality of the AVR Assembler language is low because some of the assembly
instructions require specific registers given as parameters like the cbi (clear bit) constructs used in
the blink example for AVR Assembler in listing 3.4.
Based on the theory in section 5.1.1 this makes AVR Assembler less readable than e.g. AVR C that
is more expressive and has higher orthogonality. As for the preprocessed blink example for AVR C
in listing 3.10 we see that the code required to turn on a LED requires a complex statement that
includes the binary or and left shifting which in contrast to the blink example in Tang in listing
9.16, only requires the programmer to access a bit in a register and set it to true. Given the target
group, Tang is therefore evaluated as being more readable than AVR C.
As for the readability between the Arduino language and Tang, the Arduino language has more
meaningful constructs like Digital.Write and Delay even though Tang has standard libraries in
form of Nano.tang, which includes these functions and provides an easy interface to pins, interrupts,
PWM, and the ADC, much like the Arduino language, we choose not to count this as part of the
language for reasons explained later in this section. Listing I in appendix I shows a blink example
written in Java. In terms of readability, Java is, for the blink example, as readable as AVR C as it
uses many of the same constructs like left-shifting, the only difference is that since the Java example
imports the Haiku library the DDRB and PORB registers are provided.
The table below summarises the readability of the five languages in relation to the comparison of
the readability of the languages conducted above.

AVR C
low high

Arduino Language

Tang

AVR Assembler

Java

Table 9.1: Readability

Writability
According to the theory in section 5.1.1, the writability of a language depends on the simplicity,
expressivity, and orthogonality of a programming language, but also depends on readability. The
writability of the Arduino language is in contrast to the blink example written in AVR C in listing
3.10 not that writable as the expressivity of the statements used to change bits for pins, and setting
a delay is lower than for Arduino as the AVR C code for e.g. setting a bit is much more complex and
requires more language constructs as can be seen by the two blink examples in listing 3.1 and 3.10.
In relation to AVR Assembler, we reasoned previously that the language has relatively low orthog-
onality which decreases the languages writability. As for the expressivity of the language we see in
listing 3.4 that the constructs for setting a delay in AVR Assembler is not very expressive which
also decreases its writability. If we also look at the readability of AVR Assembler, the readability
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was previously determined to be lower than that of AVR C which along with the low expressivity
and orthogonality of AVR Assembler makes the language less writable for the blink example than
AVR C. As for Tang the blink example in listing 9.16 shows that for the blink example the different
statements for setting delay and e.g. clearing a bit is more expressive than the similar statements
for AVR C. However, since these same statements are more readable and expressive in the Arduino
language than in Tang, the Arduino language is for the blink example more writable than Tang.

The Java example in listing I is not as expressive as Tang, but is still relatively expressive due
to the use of compound assignments. However, due to the similarities with AVR C, for the blink
example, Java is as writable as AVR C.

AVR C
low high

Arduino Language

Tang

AVR Assembler

Java

Table 9.2: Writability

Reliability
A program is reliable if it performs according to its specifications [41, p. 37]. In order to evaluate
different languages, we have to look at the language specifications for each of the five languages.
In the blink example for AVR C, we conduct signed integer addition which according to [78] can lead
to signed integer overflow. The C standards specifies signed integer overflow as having undefined
behaviour which makes the program less reliable than programs that have defined behaviour for
overflow like Java [83] [41, p. 37]. This is also the case with the Arduino language and Tang, which
also decreases their reliability [41, p. 37]. AVR C uses some type-checking at compile-time [84],
but not at run-time which increases its reliability over AVR Assembler [26] which has no type-
checking [41, p. 37]. This means that AVR Assembler has lower reliability than AVR C, because
in AVR Assembler it is the programmer’s responsibility that he performs the correct operations on
the correct types[41, p. 37]. It can be argued that this would make AVR Assembler have higher
reliability, but since we see reliability as the compiler making sure that the programmer is not
misunderstood, we came to the conclusion that AVR Assembler has lower reliability[41, p. 37].
AVR Assembler also has low readability and writability, which also makes it has lower reliability[41,
p. 37]. This puts AVR Assembler below AVR C.
Arduino is based on C++, where classes and exception-handling are possible, which increases
readability and thus reliability [41, p. 37]. C++ is an expansion of C and thus includes pointers
which create aliasing and decreases reliability [41, p. 37]. Arduino abstracts over pins and other
hardware through standard libraries, making it more readable and writable and thus reliability, and
therefore puts it above AVR C [41, p. 37].
Tang is based on AVR C, but does not include C-pointers directly. Instead it includes the register
type, which also works at specific memory-addresses like C’s pointers, but have more limitations
and cannot be cast to other types and thus only decreases reliability a bit [41, p. 37]. Tang in
turn performs more type-checking and reduces the number of constructs and different types, which
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makes for a more reliable language than Arduino [41, p. 37].
Java, as the only language, performs automatic type-checking at run-time [85], which increases the
reliability [41, p. 37], but Java also includes many constructs and is pure object oriented and have
lower readability as concluded, which decreases its readability and thus reliability [41, p. 37]. Java
also includes exception-handling, which also increases its reliability [41, p. 37]. Furthermore Java
does not include pointers which also increases it reliability [41, p.37]. All things considered, Java is
more reliable than Arduino language and Tang, according to this test.

AVR C
low high

Arduino Language

Tang

AVR Assembler

Java

Table 9.3: Reliability

Cost
Cost of a programming language is concerned with simplicity, orthogonality, writability, perfor-
mance of compiler, language implementation system, reliability, and maintainability 5.1.1. To test
the performance of the compiler we will check the size of the compiled program and the compilation
time of each of the tested languages. To test the execution speed of the different languages, each
blink example is compiled and executed on the Arduino, and then the speed with which the led
blinks is used to discuss the execution speed of each program. All programs counts with the same
value, as to accurately compare the execution speed. As for the maintainability of the programs
written in the different languages we say that the maintainability of the different languages in re-
lation to the blink example is equal to their readability as these two are closely related (see section
5.1.1) and since comparing other things like features, paradigms etc. would not make for a fair
comparison as not all these features are comparable and/or relevant for embedded programming.
Simplicity and orthogonality has to do with cost of training programmers to use a language 5.1.1,
but since these criteria has to do with readability and writability they will not be further elaborated
on in this section.
Table 9.4 shows the size of the object code generated by the compiler in each language. The AVR
Assembler produces the object code that takes up the least amount of memory, using only 164
bytes, whereas the higher level languages like Arduino and Java uses 942 bytes and 5324 bytes
respectively. The reason that the size of the object code for the blink example in Arduino language
is larger than that for AVR C is that Arduino includes Arduino.h, which adds to the total program
size (see table 3.2). Tang takes up more memory than AVR C but less than the Arduino language
due to the fact that Tang does not include a lot of constructs like the Arduino language, but does
not optimise the code, so functions like pow is included in Tang whether used or not. Java takes
up more than 5000 bytes because it includes a JVM [86] and Java bytecode.

116



Chapter 9. Test 9.4. Language Evaluation Test

Language Size of object code
AVR Assembler 164 bytes
Java 5324 bytes
AVR C 282 bytes
Tang 758 bytes
Arduino Language 942 bytes

Table 9.4: Size of compiled object code for the blink examples (see electronic appendix for hex
files).

To further measure the cost of compilation, listing 9.5 shows the compilation-time required to
compile the blink program in each of the below languages. The compilation time for compiling the
AVR C and the Arduino language is similar, whereas the compilation time of the AVR Assembler
language is slightly faster. This result is as expected since the AVR Assembler instructions has a
direct mapping to machine code instructions [26]. Tang has the second highest compilation time
of 1.262 seconds which is due to the compilation time of Tang not being highly prioritised during
development. The compilation time of Java is approximately 3.9 seconds due to the fact that Java is
a large and complicated language with many constructs in comparison to the four other languages.

Language Compilation-time
AVR Assembler 0.022 seconds
Java 3.894 seconds
AVR C 0.036 seconds
Tang 1.262 seconds
Arduino Language 0.35 seconds

Table 9.5: Time used for compilation (not upload) for the blink examples (See electronic appendix
for code).

Table 9.6 shows the interval it takes for a LED to blink in the compared languages. We use this
to measure the execution speed in relation to cost of executing the object code generated by each
compiler. AVR Assembler is by far the most cost-efficient of the languages in terms of execution time
which is expected as the AVR Assembler instructions have a one-to-one correspondence with the
generated machine-code instructions, and the number 3.2 million comes from the AVR Assembler,
where it takes approx. 1 second to count to 3.2 million. In Tang the interval of each blink is
approx. 12 seconds which is slower than AVR Assembler, Arduino language and AVR C, but faster
than Java where the interval is over four minutes, partly due to the JVM needing to compile every
statement before running it. The reason for the difference of the execution speed between AVR C,
Arduino language and Tang is that the Tang code is not exposed to any optimisation by the Tang
compiler and contains more checks to ensure reliability and is not called with the optimise flag by
the gcc compiler as this will sometimes produce unexpected results where the originally intent of a
program has been modified by the optimiser, which can be almost impossible to debug if you are
not aware. Note that this test is just a bench mark for measuring execution speed of for-loops and
only tests a small subset of the different languages.
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Language Blink interval in seconds
AVR Assembler 1.00 seconds
Java 4 minutes 51.12 seconds
AVR C 3.64 seconds
Tang 12.4 seconds
Arduino Language 7.12 seconds

Table 9.6: Run-time for counting to 3.2 million 1 time in each language. A video can be found in
[87].

As for the cost for the implementation time of the different languages these are similar for most of
them, as all the languages works on the family of AVR microcontrollers.
The table 9.6 gives an overview of the estimated cost of using each language in relation to the the-
ory on cost of using a language in section 5.1.1 and is based on simplicity, writability, compilation
time, and execution time. It is important to note, that a low cost is considered advantageous for a
language, in contrast to the other criteria, where it is the high score.

AVR C
low high

Arduino Language

Tang

AVR Assembler

Java

Table 9.7: Cost

User Test
In order to get insight into Tang from another perspective than the members of the group, we asked
two students from a neighbouring computer science group to solve the tasks in appendix J. The
test method is based on the test plan in section 2.6.
As appendix J and J.1 shows, one of these programmers corresponds to the intended target group
of Tang whereas the other programmer has some experience in embedded programming. Appendix
J shows the tasks that the two programmers were asked to solve. In the first task the programmers
were asked to read a Tang program and answer two questions related it. The first programmer
answered both of these programs wrong as he understood the for-loop: “for int i from 1 to 6” as
iterating through the values (1,2,3,4,5) not including the numeral 6 (see listing J.1.1 in appendix
J).
The other programmer correctly solved this assignment and thus also the for-loop (see listing J.1.2
in appendix J.1. The programmer seen in J.1.2 was the test person with embedded programming
experience, while J.1.1 did not have any experience.
Even though these test do not provide absolute conclusive results, it seems like the for-loop has a
somewhat ambiguous meaning. In relation to assignment 2 both programmers were able to under-
stand the essence of working with registers and able to set and clear bits for the necessary hardware
pins. However, the first programmer incorrectly sat the pin-mode of the LED pin to ’INPUT’
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(listing J.1.1) . And as no follow-up questions were asked it is not clear whether or not this was
intentionally or unintentionally but highlights a possible concern of the language.
In both tests, the programmers were able to use the functions they have written in assignment 2.c
and 2.d (see appendix J) to write a blink program in Tang. However, only the second test person’s
program was able to compile as the first programmer used curly brackets instead of indentation.
This programmer later stated, that he did it this way due to him not knowing that the programming
used indentation instead of curly brackets.

Even though the test in itself does not indicate whether or not Tang has the intended readability
and writability, it provides insight into some of the challenges of the language. During the tests we
discovered that testing Tang was difficult since programming hardware can be challenging without
more than a brief introduction of how to to this.
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Discussion

10.1 General Concerns

In this section, we will summarise and discuss some of the general concerns regarding the imple-
mentation of Tang.
In section 6.3, we selected different features for Tang from the imperative and object-oriented
paradigm. Though we did not consider all possible features from these paradigms and as such we
may have missed some. The language may have been better designed if we had included members
of the target-group in the process.
The syntax for Tang was designed based on the prioritised language evaluation criteria and influ-
enced by data from a scientific paper for the Quorum language (see section 6.4). However, not
all features of Tang were examined in the Quorum paper and the design of these features were
instead based on our own assessment of how intuitive these features were for beginners of hardware
programming.
The evaluation of Tang and other Arduino languages, was based on a description and prioritisation
of the following four language criteria from [41]: writability, readability, reliability, and cost.
Using these criteria to evaluate the different languages in section 9.4 was found to be difficult, as the
evaluation criteria do not state directly how to measure each of the criteria, but instead describes
the characteristics of each criteria. These characteristics can be somewhat contradicting, and in
some cases it is difficult to determine if a specific feature enhances a specific evaluation criteria
of the language. For instance [41] says that a characteristic of a writable language is a language
that is expressive and readable. However, [41] then states that expressive features happen at the
expense of readability of a language, which makes it hard to determine if a language feature that
is expressive, but not readable, increases or decreases the writability of a language.
In most cases, the characteristics of the four criteria can indicate whether a feature enhances a spe-
cific language criteria. We found it difficult to use it as a basis for comparing different languages,
because it is hard to compare e.g. the readability of two languages when readability is not directly
measurable, whereas it is easier to determine if adding a feature makes a language more readable
based on the characteristics of readability from [41].
In relation to the measurability of the criteria, we experienced that if we have two languages that
have two distinct characteristics for enhancing some language evaluation criteria, it is hard to de-
termine which of these characteristics are most important for the specific evaluation criteria as it is
not defined by [41]. An example of this, which we experienced in 9.4, is that the Arduino language
used more expressive features for the blink example than AVR C did, but AVR C was simpler in
terms of the total constructs used, which both are characteristics of writable languages, but do not
directly state which language are most writable.
The concerns of the current approach of evaluating languages in this project is therefore that there
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is no deterministic way of evaluating a language. Another concern is that the evaluation conducted
on the six different languages: AVR C, AVR Assembly, the Arduino language, Java, JavaScript,
and Tang only looks at a subset of each of these languages. This means that other issues might
have been discovered if other subsets of these languages were evaluated. However, the reason for
evaluating the languages in relation to only a subset of the languages is that if we were to evaluate
the entire languages it would be difficult and time-consuming as the tested languages are from
different paradigms and contain a lot of different constructs that are not comparable.
Another reason for testing only a subset of the languages is that the subset that is tested is related
to hardware programming and has to do with e.g. changing bits in registers which is central to
hardware programming, and thus also this project.
It is also a troublesome task to analyse if the blink programs written in the languages stated above
are equally making use of the features of the specific languages. This may mean that if the blink
program written in e.g. Java was not optimally written, then it could cause Java to be unfairly slow
relative to the other languages.

10.2 Choice of Software Development Method

In chapter 2, we chose to use the iterative waterfall method as the software development method
for this project.
The reason we chose this, was that we did not have any experience with the design and implemen-
tation of a programming language. The iterative waterfall method would allow us to understand
each phase of designing and creating a language before moving on to the next phase while also
allowing us to iterate through and modify earlier phases. This approach was suitable as it allowed
us to understand the problems with current Arduino languages before designing the features we
wanted in the finished version of Tang. This helped the design of the language as we knew which
kind of language we wanted to design, and which problems we wanted to solve.

After having formally described some of the features of Tang, we discovered that it was a time
consuming task to formalise a language and because we did not know the time taken to formalise
and implement the entire language, we decided to do this in iterations.
Because we had already decided which features were to be included in Tang, we were able to make
a MoSCoW analysis where we prioritised the language features of Tang into four categories based
on their importance. We therefore moved to a more iterative approach to formalise and describe a
subset of the language where we, in each iteration, created the features that correspond to the four
categories of the MoSCoW analysis starting with the most important features (see section 6.6).
Even though the chosen development method was modified towards a more iterative approach to
accommodate the time constraints of the project, the iterative waterfall method allowed us to get
the full overview of the language we wanted to design, while also allowing us to iterate and modify
different phases of the design and implementation of the language. We viewed this as a necessity
in our project, as we discovered that compiler and language design is an iterative process, where a
lot of changes and modifications occur as new experiences and knowledge is obtained.

10.3 Language Evaluation Criteria

In this section the findings of the language evaluation in section 9.4 will be discussed.
In accordance to the evaluation criteria established for each of the languages, we see that the subset
of Arduino language we tested is the most readable and writable of the different language subsets.
One reason for this, is that the Arduino language adds a layer of abstraction where it, based on the
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selected Arduino board in the Arduino IDE, imports a library that contains functions for setting a
delay, or setting a hardware pin to LOW/HIGH according to the print on the board.
The problem with doing so is that the Arduino language is basically C++ code with predefined
functions which means that if the user wants to write some of these functions, in order to get a
better understanding of the hardware, they have to write code according to the C++ specification’s
meaning that they have to use complex operations like bit-shifting.
In Tang, we wanted to avoid this and therefore did not include functions for setting a delay etc. as
part of the pre-processing of Tang. The reason for this choice is that we in Tang wanted to make a
programming language where programmers that had not previously programmed hardware would
get to work with hardware registers and pins the way they are represented on the micro-controller
board without having to learn multiple bitwise operators.

10.4 Implementation considerations

Based on the choice of parser implementation approach in section 8.1.4, we implemented a parser
generator. We extended this implementation approach to the development of a compiler generator
to generate the parser, type checking, and syntax tree translation for the Tang compiler. In this
section we will discuss the advantages and disadvantages of our implementation approach. The
choice of making a LL(1) grammar enabled us to implement a parser generator. Generating a
parser based on this grammar was a manageable task after the calculation of predict sets were im-
plemented. The disadvantage of using a LL(1) grammar was that the structure of the CST reflected
the left factorisations done in the grammar. For instance, this resulted in a non-preferable structure
of expressions (see section 8.4.2).
Some limitations could be solved by using a less restrictive grammar class like LL(k), that requires
the parser to be able to apply rules based on a look-a-head of multiple tokens. However, this adds
complexity to the parser and thereby also the parser generator. The approach of creating a parser
generator in this project was therefore possible due to the simplicity of the recursive descent parsing
strategy and the choice of LL(1) grammar. For projects with higher requirements for the parser it
might be preferable to use an existing parser generator in order to save time. To translate a CST
to an AST for Tang we invented a new language to denote rules of syntax tree translation. This
translation language can be categorised as a logical programming language as it defines relations
between syntax trees based on inference rules and axioms (see section 5.2.3).
The use of inference rules makes it similar to the use of rules in the structural operational semantics
and type systems. Besides translating a CST to an AST, the translation language can be used for
type checking and code generation as well (see section 8.4.2 and 8.4.4). A disadvantage of using the
translation language for most of the compiler was that we needed to implement a translator gener-
ator to convert the translation language to the C# implementation language of the Tang compiler.
For this, we discovered an advantage of creating a parser generator as we could use this to generate
the parser for the translation language. This means that parts of the generator are generated.
A disadvantage of our implementation approach is that the implementation of the compiler gen-
erator has been a time consuming process. On the other hand the advantage is that, besides
fulfilling the primary implementation goal i.e. implementing a compiler based on the formalisation
of Tang, we have introduced a new language for syntax tree translation and implemented a compiler
generator that can be used to generate a compiler’s components in future projects.
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Conclusion

In this project, we have designed, formalised, implemented, and tested a new programming lan-
guage called Tang. Tang is an imperative programming language for the Arduino that has been
developed to answer the problem statement:
“How can a programming language for Arduino be developed for programmers with no previous ex-
perience in embedded programming?”.

To answer the problem statement, the design and implementation of Tang have been developed
to answer the four research questions related to the problem statement (see section 4).

As an answer to the question How can the programmer be able to control hardware components
on the Arduino? we added, in the design of Tang, features for controlling hardware components
like register types, a bit index operator, and an interrupt construct (see section 6.3). Furthermore,
we added support for bit-length on register and integer types which allows programmers to make
better use of the low memory capabilities of the Arduino board (see section 3.1.1).
Additional operators, types, and control-statements were also added to the design of Tang to enable
control-flow, arithmetic operations, and to represent binary values in the language. These additional
features can be used along with e.g. registers, to control hardware components. The blink exam-
ple in listing 9.16 shows how a subset of these features can be used to control hardware components.

As an answer to the question How can the programming language support abstractions of hard-
ware components? we implemented a register and an interrupt construct which are abstractions of
hardware registers and hardware interrupts.
Furthermore, we added functions and classes to the design of Tang which allows the programmer
to abstract over hardware components by e.g. creating classes to represent hardware components
which, could be a pin class containing functions for reading and writing from a specific hardware
pin to Tang.
The implementation of Tang developed in this project includes support for registers, interrupts,
and functions but not classes since these were prioritised low in the MoSCoW analysis (see section
6.6).

The research question How can syntax and semantics be defined for the programming language?
is answered b formally specifying the tokens of Tang using regular expressions in 7.1.1, describing
the syntactic rules of Tang using a CFG in section 7.1.2, describing the run-time semantics of Tang
using structural operational semantics in section 5.4, and formally describing the legal types using
a type system in section 7.2.3.
The constraints of the formal descriptions of the syntax and semantics of Tang are described in
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section 7.3. Some of these constraints concern the operational semantics not giving a formal de-
scription of the run-time semantics of interrupts, which are instead informally described.

To test the language, we devised a test plan in section 2.6, which includes four types of tests:
unit, integration, verification, and evaluation tests.
These tests were described in chapter 9 and the unit tests assess the individual components of the
compiler to check that they function as intended.
The integration tests check if these components work together by compiling a bunch of programs
written specifically for this purpose and the run-time tests validate that different programs written
in Tang execute properly on an Arduino Nano.
In the language evaluation test, we compared Tang to other languages for embedded programming
in order to understand the differences between these languages. The language evaluation test shows
that the Arduino language is the most writable and readable of all the languages compared, due to
having a lot of predefined functions that are imported upon pre-processing. Furthermore, it shows
that the reliability of Tang to some degree is constrained by the reliability of C (see section 9.4).

To evaluate Tang from another perspective than those of this project group, we tested the lan-
guage on two students from a computer science group at Aalborg University. The test highlights
an ambiguity in the syntax-design of for-loops, as well as a possible confusion of whether or not
specific hardware pin’s mode are set to output or input. In later iterations of Tang the language
should be tested on a larger set of the target group. Furthermore, the following missing features
should be formally described, implemented, and tested: strings, floats, chars, arrays, and classes.

As discussed in chapter 10, we developed a tool to generate most of the compiler. Since this was
not the purpose of the project, it was important for us, that its development did not distract from
the design and implementation of Tang. We did not create a tool because we thought it was a more
time efficient way to implement a compiler, compared using existing tools, but it provided us with
insight into the development of a compiler while also giving us some of the benefits of a tool, like
more maintainable code.
In conclusion, we have designed, implemented, and tested a programming language targeted at
programmers with little to no experience with developing for embedded systems. The language
enables programmers to interact with the underlying hardware components on the Arduino board
through abstractions over some low-level systems like registers and interrupts. The language also
allows programmers to create their own higher-level abstractions through the use of functions. The
syntax of the language is formalised as an LL(1) grammar in BNF format and the semantics is
formally described using structural operational semantics and a type system.
The status of the implementation of Tang is that we have implemented the features that have been
formalised in the language specification of Tang including file import and comments.
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Appendix A

Disassemble of Binaries for Blink Example in
C

1 00000000 <__vectors >:
2 0: 0c 94 34 00 jmp 0x68 ; 0x68 <__ctors_end >
3 4: 0c 94 3e 00 jmp 0x7c ; 0x7c <__bad_interrupt >
4 8: 0c 94 3e 00 jmp 0x7c ; 0x7c <__bad_interrupt >
5 c: 0c 94 3e 00 jmp 0x7c ; 0x7c <__bad_interrupt >
6 10: 0c 94 3e 00 jmp 0x7c ; 0x7c <__bad_interrupt >
7 14: 0c 94 3e 00 jmp 0x7c ; 0x7c <__bad_interrupt >
8 18: 0c 94 3e 00 jmp 0x7c ; 0x7c <__bad_interrupt >
9 1c: 0c 94 3e 00 jmp 0x7c ; 0x7c <__bad_interrupt >
10 20: 0c 94 3e 00 jmp 0x7c ; 0x7c <__bad_interrupt >
11 24: 0c 94 3e 00 jmp 0x7c ; 0x7c <__bad_interrupt >
12 28: 0c 94 3e 00 jmp 0x7c ; 0x7c <__bad_interrupt >
13 2c: 0c 94 3e 00 jmp 0x7c ; 0x7c <__bad_interrupt >
14 30: 0c 94 3e 00 jmp 0x7c ; 0x7c <__bad_interrupt >
15 34: 0c 94 3e 00 jmp 0x7c ; 0x7c <__bad_interrupt >
16 38: 0c 94 3e 00 jmp 0x7c ; 0x7c <__bad_interrupt >
17 3c: 0c 94 3e 00 jmp 0x7c ; 0x7c <__bad_interrupt >
18 40: 0c 94 3e 00 jmp 0x7c ; 0x7c <__bad_interrupt >
19 44: 0c 94 3e 00 jmp 0x7c ; 0x7c <__bad_interrupt >
20 48: 0c 94 3e 00 jmp 0x7c ; 0x7c <__bad_interrupt >
21 4c: 0c 94 3e 00 jmp 0x7c ; 0x7c <__bad_interrupt >
22 50: 0c 94 3e 00 jmp 0x7c ; 0x7c <__bad_interrupt >
23 54: 0c 94 3e 00 jmp 0x7c ; 0x7c <__bad_interrupt >
24 58: 0c 94 3e 00 jmp 0x7c ; 0x7c <__bad_interrupt >
25 5c: 0c 94 3e 00 jmp 0x7c ; 0x7c <__bad_interrupt >
26 60: 0c 94 3e 00 jmp 0x7c ; 0x7c <__bad_interrupt >
27 64: 0c 94 3e 00 jmp 0x7c ; 0x7c <__bad_interrupt >
28
29 00000068 <__ctors_end >:
30 68: 11 24 eor r1, r1
31 6a: 1f be out 0x3f , r1 ; 63
32 6c: cf ef ldi r28 , 0xFF ; 255
33 6e: d8 e0 ldi r29 , 0x08 ; 8
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34 70: de bf out 0x3e , r29 ; 62
35 72: cd bf out 0x3d , r28 ; 61
36 74: 0e 94 40 00 call 0x80 ; 0x80 <main >
37 78: 0c 94 56 00 jmp 0xac ; 0xac <_exit >
38
39 0000007c <__bad_interrupt >:
40 7c: 0c 94 00 00 jmp 0 ; 0x0 <__vectors >
41
42 00000080 <main >:
43 80: 25 9a sbi 0x04 , 5 ; 4
44 82: 2d 9a sbi 0x05 , 5 ; 5
45 84: 2f ef ldi r18 , 0xFF ; 255
46 86: 83 ed ldi r24 , 0xD3 ; 211
47 88: 90 e3 ldi r25 , 0x30 ; 48
48 8a: 21 50 subi r18 , 0x01 ; 1
49 8c: 80 40 sbci r24 , 0x00 ; 0
50 8e: 90 40 sbci r25 , 0x00 ; 0
51 90: e1 f7 brne .-8 ; 0x8a <main+0xa>
52 92: 00 c0 rjmp .+0 ; 0x94 <main+0x14 >
53 94: 00 00 nop
54 96: 2d 98 cbi 0x05 , 5 ; 5
55 98: 2f ef ldi r18 , 0xFF ; 255
56 9a: 83 ed ldi r24 , 0xD3 ; 211
57 9c: 90 e3 ldi r25 , 0x30 ; 48
58 9e: 21 50 subi r18 , 0x01 ; 1
59 a0: 80 40 sbci r24 , 0x00 ; 0
60 a2: 90 40 sbci r25 , 0x00 ; 0
61 a4: e1 f7 brne .-8 ; 0x9e <main+0x1e >
62 a6: 00 c0 rjmp .+0 ; 0xa8 <main+0x28 >
63 a8: 00 00 nop
64 aa: eb cf rjmp .-42 ; 0x82 <main+0x2>
65
66 000000 ac <_exit >:
67 ac: f8 94 cli
68
69 000000 ae <__stop_program >:
70 ae: ff cf rjmp .-2 ; 0xae <__stop_program >

Listing A.1: Shows the disassemble of the compiled binaries from the blink program in listing 3.4.
The blink example program was compiled with avrgcc using flags mmcuātmega328p and Os.
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Java LED Class for Arduino

1 package processing.examples._01_Basics;
2
3 import static processing.hardware.arduino.cores.arduino.Arduino .*;
4
5 public class Led {
6 int ledPin;
7 int blinkInterval;
8 BlinkThread blinkThread;
9 boolean blinking = false;
10
11 public Led(int pin) {
12 ledPin = pin;
13 blinkInterval = 1000;
14 pinMode(ledPin , OUTPUT);
15 blinkThread = new BlinkThread ();
16 }
17
18 class BlinkThread extends Thread {
19 boolean running = false;
20 public void run() {
21 running = true;
22 while(running) {
23 digitalWrite(ledPin , HIGH);
24 delay(blinkInterval);
25 digitalWrite(ledPin , LOW);
26 delay(blinkInterval);
27 }
28 }
29 public void kill() {
30 if(running) {
31 running = false;
32 stop();
33 }
34 }
35 }
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36
37 public void blink(int interval) {
38 blinkThread.kill();
39 blinkInterval = interval;
40 blinkThread = new BlinkThread ();
41 blinkThread.start();
42 }
43
44 public void on() {
45 blinkThread.kill();
46 digitalWrite(ledPin , HIGH);
47 }
48
49 public void off() {
50 blinkThread.kill();
51 digitalWrite(ledPin , LOW);
52 }
53
54 public boolean isOn() {
55 return digitalRead(ledPin) == HIGH;
56 }
57 }

Listing B.1: Shows Led class implemented in Java using HaikuVM.
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Appendix C

Structural Operational Semantics

Abstract syntax

P ∈ Prog - Programs
S ∈ Stm - Root level statements
s ∈ SimpleStm - Scoped level statements

sif ∈ IfStm - If Statements
e ∈ Exp - Expressions
b ∈ BoolExp - Boolean expressions
i ∈ IntExp - Integer expressions
x ∈ VNames - Variable names
p ∈ PNames - Procedure names
n ∈ Num - Numerals

TInt ∈ IntTypes - Integer types {int8, int16, int32}
TReg ∈ RegTypes - Register types {register8, register16}

T ∈ Types - Types (TInt ∪ TReg ∪ {bool, nothing, undefined})
v ∈ Val - Values (Z ∪ {tt, ff})
r ∈ Ret - Return values. Ret = (Types×Val) ∪ ε

Table C.1: Syntactic categories

P ::= S | ε
S ::= S1 newline S2 | s | T p(T1 x1, T2 x2, . . . Tk xk) indent s dedent | interrupt(n) indent s dedent
s ::= newline | e | s1 newline s2 | T x | T x = e | x = e

| x{i} = b | TReg(n){i} = b | return | return e | while(b) indent s dedent
| for(TInt x from i1 to i2) indent s dedent | sif

sif ::= if(b) indent s dedent | if(b) indent s dedent else sif
| if(b) indent s1 dedent else indent s2 dedent

e ::= x | i | b | (e1) | p(e1, e2, . . . ek) | TReg(n)
i ::= n | e | i1 + i2 | i1 − i2 | i1 ∗ i2 | i1/i2 | i1 % i2 | i1ˆi2
b ::= true | false | e | e1 == e2 | e1!= e2 | i1 < i2 | i1 <= i2 | i1 >= i2 | i1 > i2 | !b1

| b1 and b2 | b1 or b2 | x{i} | TReg(n){i}

Table C.2: Formation rules where newline, indent and dedent are substitutes for their respective
tokens
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Environment-store model definitions

Loc = N
l ∈ Loc

Sto = Loc⇀ (Types×Val)
sto ∈ Sto
sto[l 7→ (T, v)] = sto′

sto′y =

{
sto y if y 6= l

(T, v) if y = l

EnvV = VNames ∪ {next}⇀ Loc
envV ∈ EnvV
envV [x 7→ l] = env′V

env′V y =

{
envV y if y 6= x

l if y = x

EnvP = PNames⇀ (EnvV × SimpleStm× (VNamesk))
envP ∈ EnvP
envP [p 7→ (envV , s, (x1, x2, . . . xk))] = env′P

env′P q =

{
envP q if q 6= p

(envV , s, (x1, x2, . . . xk)) if q = p

The function new evaluates to a new location following the given location.

new : Loc→ Loc
new l = l + 1

The function default evaluates to the default value of a type.

default : Types⇀ Val

default T =

{
0 if T ∈ {int8, int16, int32, register8, register16}
ff if T = bool

The function bitlen evaluates to the number of bits a variable of the given type can store.

bitlen : Types→ Val

bitlen T =



0 if T = nothing

1 if T = bool

8 if T ∈ {int8, register8}
16 if T ∈ {int16, register16}
32 if T = int32
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Type Set(Type)
int8 {−28−1 to 28s−1 − 1}
int16 {−216−1 to 216−1 − 1}
int32 {−232−1 to 232−1 − 1}
bool {tt, ff}
undefined ∅
register8 Loc

register16 Loc

nothing {NothingV al}

Furthermore we define the following type relation for integers: int8 ⊃ int16 ⊃ int32. We also
define the function largestIntegerType that given a number of types return the biggest subset of
the super-type that is given to the function

largestIntegerType(TInt1 , TInt2 , . . . TIntk) = TIntj where 1 ≤ j ≤ k and TInti ⊇ TIntj for all 1 ≤ i ≤ k

The empty variable environment is denoted env∅V .
The semantics of Prog are given by the transition system (ΓP ,→P , TP ) whose configurations are
defined by

ΓP = Prog ∪Ret

TP = Ret

Transitions here have the format P →P r

[Statement]

〈S, env∅V , env
∅
P 〉 →Scan (env′V , env

′
P )

env′P ` 〈S, sto∅, env
∅
V 〉 →S (sto, envV , r)

S →P r

[empty] ε→P (nothing, nothingval)

Table C.3: The transition rules →P

In order to fill the procedure environment before executing any statements we define the Scan
transition system as follows: (ΓScan,→Scan, TScan). Its configurations are defined by

ΓScan = ((Stm ∪ SimpleStm)×EnvP×EnvV) ∪ (EnvP×EnvV)

TScan = EnvP×EnvV

The following transitions are for the subset of Scan configurations (Stm × EnvP × EnvV) ∪
(EnvP×EnvV) and have the format 〈S, envP , envV 〉 →Scan (env′P , env

′
V )
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[ScanCompoundStatement]

〈S1, envP , envV 〉 →Scan (env′′P , env
′′
V )

〈S2, env
′′
P , env

′′
V 〉 →Scan (env′P , env

′
V )

〈S1 newline S2, envP , envV 〉 →Scan (env′P , env
′
V )

[ScanProcedureDeclaration] 〈T p(T1 x1, T2 x2, . . . Tk xk) indent s dedent, envP , envV 〉
→Scan (envP [p 7→ (envV , s, (x1, x2, . . . xk))], envV )

[ScanInterrupt] 〈interrupt(n) indent s dedent, envP , envV 〉 →Scan (envP , envV )

Table C.4: Subset of the transition rules →Scan

The following transitions are for the subset of Scan configurations (SimpleStm×EnvP×EnvV)∪
(EnvP×EnvV) and have the format 〈s, envP , envV 〉 →Scan (env′P , env

′
V )

[ScanNewline] 〈newline, envP , envV 〉 →Scan (envP , envV )

[ScanExpression] 〈e, envP , envV 〉 →Scan (envP , envV )

[ScanCompoundSimpleStatement]

〈s1, envP , envV 〉 →Scan (env′′P , env
′′
V )

〈s2, env′′P , env′′V 〉 →Scan (env′P , env
′
V )

〈s1 newline s2, envP , envV 〉 →Scan (env′P , env
′
V )

[ScanV ariableDeclaration] 〈T x, envP , envV 〉 →Scan (envP , envV [x 7→ l][next 7→ new(l)])

Where l = envV (next)

[ScanV ariableDefinition]
〈T x, envP , envV 〉 →Scan (env′P , env

′
V )

〈T x = e, envP , envV 〉 →Scan (env′P , env
′
V )

[ScanAssignment] 〈x = e, envP , envV 〉 →Scan (envP , envV )

[ScanRegisterSetBit] 〈x{i} = b, envP , envV 〉 →Scan (envP , envV )

[ScanRegisterLiteralSetBit] 〈TReg(i1){i2} = b, envP , envV 〉 →Scan (envP , envV )

[ScanReturn] 〈return, envP , envV 〉 →Scan (envP , envV )

[ScanReturnWithV alue] 〈return e, envP , envV 〉 →Scan (envP , envV )

[ScanWhileStatement] 〈while(b) indent s dedent, envP , envV 〉 →Scan (envP , envV )

[ScanForStatement] 〈for(int x from i1 to i2) indent s dedent, envP , envV 〉 →Scan (envP , envV )

[ScanIfStatement] 〈sif , envP , envV 〉 →Scan (envP , envV )
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Table C.6: Subset of the transition rules →Scan

The semantics of Statements are given by the transition system (ΓS ,→S , TS) whose configurations
are defined by

ΓS = (Stm× Sto×EnvV) ∪ (Sto×EnvV ×Ret)

TS = (Sto×EnvV ×Ret)

Transitions here have the format envP ` 〈S, sto, envV 〉 →S (sto′, env′V , r)

[CompoundStatement1]
envP ` 〈S1, sto, envV 〉 →S (sto′, env′V , r)

envP ` 〈S1 newline S2, sto, envV 〉 →S (sto′, env′V , r)

If r 6= ε

[CompoundStatement2]

envP ` 〈S1, sto, envV 〉 →S (sto′′, env′′V , r1)

envP ` 〈S2, sto
′′, env′′V 〉 →S (sto′, env′V , r2)

envP ` 〈S1 newline S2, sto, envV 〉 →S (sto′, env′V , r2)

If r1 = ε

[SimpleStatement]
envP ` 〈s, sto, envV 〉 →s (sto′, env′V , r)

envP ` 〈s, sto, envV 〉 →S (sto′, env′V , r)

[ProcedureDeclaration] envP ` 〈T p(T1 x1, T2 x2, . . . Tk xk) indent(n) indent s dedent, sto, envV 〉
→S (sto, envV , ε)

[Interrupt] See section 7.3

Table C.7: The transition rules →S

The semantics of SimpleStm are given by the transition system (Γs,→s, Ts) whose configurations
are defined by

Γs = (SimpleStm× Sto×EnvV) ∪ (Sto×EnvV ×Ret)

Ts = (Sto×EnvV ×Ret)

Transitions here have the format envP ` 〈s, sto, envV 〉 →s (sto′, env′V , r)

[Newline] envP ` 〈newline, sto, envV 〉 →s (sto, envV , ε)

[Expression]
envP , envV ` 〈e, sto〉 →e (sto′, v)

envP ` 〈e, sto, envV 〉 →s (sto′, envV , ε)

[CompoundSimpleStatement1]
envP ` 〈s1, sto, envV 〉 →s (sto′, env′V , r)

envP ` 〈s1 newline s2, sto, envV 〉 →s (sto′, env′V , r)

If r1 6= ε
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[CompoundSimpleStatement2]

envP ` 〈s1, sto, envV 〉 →s (sto′′, env′′V , r1)

envP ` 〈s2, sto′′, env′′V 〉 →s (sto′, env′V , r2)

envP ` 〈s1 newline s2, sto, envV 〉 →s (sto′, env′V , r2)

If r1 = ε

[V ariableDeclaration] 〈T x, sto, envV 〉 →s (sto[l 7→ (T, default(T ))], envV [x 7→ l][next 7→ new(l)], ε)

Where l = envV (next)

[V ariableDefinition]

envP , envV ` 〈e, sto〉 →e (sto′′, (Te, v))

envP ` 〈T x, sto′′, envV 〉 →s (sto′, env′V , ε)

envP ` 〈T x = e, sto, envV 〉 →s (sto′[l 7→ (T, v)], env′V , ε)

Where env′V (x) = l

If v ∈ Set(T )

[Assignment]
envP , envV ` 〈e, sto〉 →e (sto′, (Te, v))

envP ` 〈x = e, sto, envV 〉 →s (sto′[l 7→ (Tx, v)], envV , ε)

Where l = envV (x)

And (Tx, vx) = sto′(l)

If v ∈ Set(Tx)

[RegisterSetBit]

envP , envV ` 〈x, sto〉 →e (sto′′′, (Tr, l))

envP , envV ` 〈i, sto′′′〉 →i (sto
′′, (Ti, vi))

envP , envV ` 〈b, sto′′〉 →b (sto
′, (Tb2 , vb2))

envP ` 〈x{i} = b, sto, envV 〉 →s (sto′[l 7→ v′], envV , ε)

Where (Tv, v) = sto′ l

And vb1 =


tt if

⌊ v

2(vi)

⌋
mod 2 = 1

ff if
⌊ v

2(vi)

⌋
mod 2 = 0

And v′ =


v − 2(vi) vb1 ∧ ¬vb2
v vb1 = vb2
v + 2(vi) ¬vb1 ∧ vb2

If vi ≥ 0

And vi <

{
8 If Tr = register8

16 If Tr = register16

[RegisterLiteralSetBit]

envP , envV ` 〈i1, sto〉 →i (sto
′′′′, (Ti1, vi1))

envP , envV ` 〈i2, sto′′′′〉 →i (sto
′′′, (Ti2, vi2))

envP , envV ` 〈TReg(ni1){ni2}, sto′′′〉 →b (sto
′′, (Tr, vr))

envP , envV ` 〈b, sto′′〉 →b (sto
′, (Tb, vb))

envP ` 〈TReg(i1){i2} = b, sto, envV 〉 →s (sto′[vi1 7→ (T, v′)], envV , ε)

If vi1 ≥ 0

And vi2 ≥ 0
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And vi2 <

{
8 If TReg = register8

16 If TReg = register16

Where ni1 = N−1Jvi1K
And ni2 = N−1Jvi2K
And (T, v) = sto′ vi1

And v′ =


v − 2(vi2) vr ∧ ¬vb
v vr = vb

v + 2(vi2) ¬vr ∧ vb

[Return] envP ` 〈return, sto, envV 〉 →s (sto, envV , (nothing, NothingV al))

[ReturnWithV alue]
envP , envV ` 〈e, sto〉 →e (sto′, (T, v))

envP ` 〈return e, sto, envV 〉 →s (sto′, envV , (T, v))

[WhileStatement1]
envP , envV ` 〈b, sto〉 →b (sto

′, (T, v))

envP ` 〈while(b) indent s dedent, sto, envV 〉 →s (sto′, envV , ε)

If v = ff

[WhileStatement2]

envP , envV ` 〈b, sto〉 →b (sto
′′, (T, v))

envP ` 〈s, sto′′, envV 〉 →s (sto′, env′V , r)

envP ` 〈while(b) indent s dedent, sto, envV 〉 →s (sto′, envV , r)

If v = tt and r 6= ε

[WhileStatement3]

envP , envV ` 〈b, sto〉 →b (sto
′′′, (T, v))

envP ` 〈s, sto′′′, envV 〉 →s (sto′′, env′V , r)

envP ` 〈while(b) indent s dedent, (sto′′, env′V )〉 →s (sto′, env′V , r)

envP ` 〈while(b) indent s dedent, sto, envV 〉 →s (sto′, envV , r)

If v = tt and r = ε

[ForStatement1]

envP , envV ` 〈i1, sto〉 →i (sto
′′′′′, (Ti1, vi1))

envP , envV ` 〈i2, sto′′′′′〉 →i (sto
′′′′, (Ti2, vi2))

envP ` 〈TInt x = ni1, sto
′′′′, envV 〉 →s (sto′′′, env′′V , r1)

envP ` 〈s, sto′′′, env′′V 〉 →s (sto′′, env′V , r2)

envP ` 〈for(TInt x from ni1 + nc to ni2) indent s dedent, sto′′, envV 〉 →s (sto′, env′′′V , r3)

envP ` 〈for(TInt x from i1 to i2) indent s dedent, sto, envV 〉 →s (sto′, envV , r3)

Where ni1 = N−1Jvi1K
And ni2 = N−1Jvi2K
And nc = N−1J(vi2 − vi1)/|vi2 − vi1|K
If vi1 6= vi2

And r2 = ε

And TInt = largestIntegerType(TInt, Ti2)

[ForStatement2]

envP , envV ` 〈i1, sto〉 →i (sto
′′, (Ti1, vi1))

envP , envV ` 〈i2, sto′′〉 →i (sto
′, (Ti2, vi2))

envP ` 〈for(TInt x from i1 to i2) indent s dedent, sto, envV 〉 →s (sto′, envV , ε)

If vi1 = vi2
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[ForStatement3]

envP , envV ` 〈i1, sto〉 →i (sto
′′′′, (Ti1, vi1))

envP , envV ` 〈i2, sto′′′′〉 →i (sto
′′′, (Ti2, vi2))

envP ` 〈TInt x = ni1, sto
′′′, envV 〉 →s (sto′′, env′′V , r1)

envP ` 〈s, sto′′, env′′V 〉 →s (sto′, env′V , r2)

envP ` 〈for(TInt x from i1 to i2) indent s dedent, sto, envV 〉 →s (sto′, envV , r2)

Where ni1 = N−1Jvi1K
If vi1 6= vi2

And r2 6= ε

And TInt = largestIntegerType(TInt, Ti2)

[IfStatement]
envP , envV ` 〈sif , sto〉 →sif (sto′, r)

envP ` 〈sif , sto, envV 〉 →s (sto′, envV , r)

Table C.9: The transition rules →s

The semantics of IfStm are given by the transition system (Γsif ,→sif , Tsif ) whose configurations
are defined by

Γsif = (IfStm× Sto) ∪ (Sto×Ret)

Tsif = (Sto×Ret)

Transitions here have the format envP , envV ` 〈sif , sto〉 →sif (sto′, r)
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[IfStatement1]
envP , envV ` 〈b, sto〉 →b (sto′, (T, v))

envP , envV ` 〈if(b) indent s dedent, sto〉 →sif (sto′, ε)

If v = ff

[IfStatement2]

envP , envV ` 〈b, sto〉 →b (sto′′, (T, v))

envP ` 〈s, sto′′, envV 〉 →s (sto′, env′V , r)

envP , envV ` 〈if(b) indent s dedent, sto〉 →sif (sto′, r)

If v = tt

[IfElseIf1]

envP , envV ` 〈b, sto〉 →b (sto′′, (T, v))

envP , envV ` 〈sif , sto′′〉 →sif (sto′, r)

envP , envV ` 〈if(b) indent s dedent else sif , sto〉 →sif (sto′, r)

If v = ff

[IfElseIf2]

envP , envV ` 〈b, sto〉 →b (sto′′, (T, v))

envP ` 〈s, envV , sto′′〉 →s (sto′, env′V , r)

envP , envV ` 〈if(b) indent s dedent else sif , sto〉 →sif (sto′, r)

If v = tt

[IfElseStatement1]

envP , envV ` 〈b, sto〉 →b (sto′′, (T, v))

envP ` 〈s2, sto′′, envV 〉 →s (sto′, env′V , r)

envP , envV ` 〈if(b) indent s1 dedent else indent s2 dedent, sto〉 →sif (sto′, r)

If v = ff

[IfElseStatement2]

envP , envV ` 〈b, sto〉 →b (sto′′, (T, v))

envP ` 〈s1, sto′′, envV 〉 →s (sto′, env′V , r)

envP , envV ` 〈if(b) indent s1 dedent else indent s2 dedent, sto〉 →sif (sto′, r)

If v = tt

Table C.10: The transition rules →sif

The semantics of Exp are given by the transition system (Γe,→e, Te) whose configurations are
defined by

Γe = (Exp× Sto) ∪ (Sto× (Types×Val))

Te = (Sto× (Types×Val))

Transitions here have the format envP , envV ` 〈e, sto〉 →e (sto′, (T, v))
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[V arEvaluation] envP , envV ` 〈x, sto〉 →e (sto, (T, v))

Where sto(envV x) = (T, v)

[IntegerExpression]
envP , envV ` 〈i, sto〉 →i (sto′, (T, v))

envP , envV ` 〈i, sto〉 →e (sto′, (T, v))

[BooleanExpression]
envP , envV ` 〈b, sto〉 →b (sto′, (T, v))

envP , envV ` 〈b, sto〉 →e (sto′, (T, v))

[ParenthesisExpression]
envP , envV ` 〈e1, sto〉 →e (sto′, (T, v))

envP , envV ` 〈(e1), sto〉 →e (sto′, (T, v))

[ProcedureCall]

envP , envV ` 〈e1, sto〉 →e (sto(1), (T1, v1))

envP , envV ` 〈e2, sto(1)〉 →e (sto(2), (T2, v2))

. . .

envP , envV ` 〈ek, sto(k−1)〉 →e (sto(k), (Tk, vk))

envP ` 〈s, sto(k)[l1 7→ v1][l2 7→ v2][. . .][lk 7→ vk],

env′V [x1 7→ l1][x2 7→ l2][. . .][xk 7→ lk][next 7→ new(lk)]〉 →s (sto′, env′′V , (Tr, r))

envP , envV ` 〈p(e1, e2, . . . ek), sto〉 →e (sto′, (Tr, r))

Where envP p = (env′V , s, (x1, x2, . . . xk))

And l1 = env′V (next)

And l2 = new(env′V (next))

And l3 = new(new(env′V (next)))

. . .
And lk = newk−1(env′V (next))

Table C.11: The transition rules →e

The semantics of IntExp are given by the transition system (Γi,→i, Ti) whose configurations are
defined by

Γi = (IntExp× Sto) ∪ (Sto× (Types×Val))

Ti = (Sto× (Types×Val))

Transitions here have the format envP , envV ` 〈i, sto〉 →i (sto′, (T, v))

[ConstantToInt] envP , envV ` 〈n, sto〉 →i (sto, (T, v))

Where N JnK = v

And T =


int8 If v ∈ Set(int8)
int16 If v ∈ Set(int16) and v /∈ Set(int8)
int32 If v ∈ Set(int32) and v /∈ Set(int16)

If v ∈ Set(int32)

[ExpressionToInt]
envP , envV ` 〈e, sto〉 →e (sto′, (T, v))

envP , envV ` 〈e, sto〉 →i (sto′, (T, v))
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[IntegerP lus]

envP , envV ` 〈i1, sto〉 →i (sto
′′, (T1, v1))

envP , envV ` 〈i2, sto′′〉 →i (sto
′, (T2, v2))

envP , envV ` 〈i1 + i2, sto〉 →i (sto′, (T3, v3))

Where v3 = v1 + v2

And T3 = largestIntegerType(T1, T2)

If v3 ∈ Set(T3)

[IntegerMinus]

envP , envV ` 〈i1, sto〉 →i (sto
′′, (T1, v1))

envP , envV ` 〈i2, sto′′〉 →i (sto
′, (T2, v2))

envP , envV ` 〈i1 − i2, sto〉 →i (sto′, (T3, v3))

Where v3 = v1 − v2
And T3 = largestIntegerType(T1, T2)

If v3 ∈ Set(T3)

[IntegerMultiplication]

envP , envV ` 〈i1, sto〉 →i (sto
′′, (T1, v1))

envP , envV ` 〈i2, sto′′〉 →i (sto
′, (T2, v2))

envP , envV ` 〈i1 ∗ i2, sto〉 →i (sto′, (T3, v3))

Where v3 = v1 · v2
And T3 = largestIntegerType(T1, T2)

If v3 ∈ Set(T3)

[IntegerDivision]

envP , envV ` 〈i1, sto〉 →i (sto
′′, (T1, v1))

envP , envV ` 〈i2, sto′′〉 →i (sto
′, (T2, v2))

envP , envV ` 〈i1/i2, sto〉 →i (sto′, (T3, v3))

Where v3 = bv1/v2c
And T3 = largestIntegerType(T1, T2)

If v2 6= 0

And v3 ∈ Set(T3)

[IntegerModulus]

envP , envV ` 〈i1, sto〉 →i (sto
′′, (T1, v1))

envP , envV ` 〈i2, sto′′〉 →i (sto
′, (T2, v2))

envP , envV ` 〈i1 % i2, sto〉 →i (sto′, (T3, v3))

Where v3 = v1 mod v2

And T3 = largestIntegerType(T1, T2)

If v3 ∈ Set(T3)

[IntegerPower]

envP , envV ` 〈i1, sto〉 →i (sto
′′, (T1, v1))

envP , envV ` 〈i2, sto′′〉 →i (sto
′, (T2, v2))

envP , envV ` 〈i1 ^ i2, sto〉 →i (sto′, (T3, v3))

Where v3 = v
(v2)
1

And T3 = largestIntegerType(T1, T2)

If v3 ∈ Set(T3)

And v2 ≥ 0
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Table C.13: The transition rules →i

The semantics of BoolExp are test hest given by the transition system (Γb,→b, Tb) whose config-
urations are defined by

Γi = (BoolExp× Sto) ∪ (Sto× (Types×Val))

Ti = Sto× (Types×Val)

Transitions here have the format envP , envV ` 〈b, sto〉 →b (sto′, (T, v))

[TrueConstant] envP , envV ` 〈true, sto〉 →b (sto, (bool, tt))

[FalseConstant] envP , envV ` 〈false, sto〉 →b (sto, (bool, ff))

[ExpressionToBoolean]
envP , envV ` 〈e, sto〉 →e (sto′, (T, v))

envP , envV ` 〈e, sto〉 →b (sto′, (T, v))

[Equals]

envP , envV ` 〈e1, sto〉 →e (sto′′, (T1, v1))

envP , envV ` 〈e2, sto′′〉 →e (sto′, (T2, v2))

envP , envV ` 〈e1 == e2, sto〉 →b (sto′, (bool, v3))

Where v3 =

{
tt if v1 = v2

ff if v1 6= v2

[NotEquals]

envP , envV ` 〈e1, sto〉 →e (sto′′, (T1, v1))

envP , envV ` 〈e2, sto′′〉 →e (sto′, (T2, v2))

envP , envV ` 〈e1 != e2, sto〉 →b (sto′, (bool, v3))

Where v3 =

{
tt if v1 6= v2

ff if v1 = v2

[IntegerLessThan]

envP , envV ` 〈i1, sto〉 →i (sto′′, (T1, v1))

envP , envV ` 〈i2, sto′′〉 →i (sto′, (T2, v2))

envP , envV ` 〈i1 < i2, sto〉 →b (sto′, (bool, v3))

Where v3 =

{
tt if v1 < v2

ff if v1 ≥ v2

[IntegerLessThanOrEquals]

envP , envV ` 〈i1, sto〉 →i (sto′′, (T1, v1))

envP , envV ` 〈i2, sto′′〉 →i (sto′, (T2, v2))

envP , envV ` 〈i1 ≤ i2, sto〉 →b (sto′, (bool, v3))

Where v3 =

{
tt if v1 ≤ v2
ff if v1 > v2
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[IntegerGreaterThanOrEquals]

envP , envV ` 〈i1, sto〉 →i (sto′′, (T1, v1))

envP , envV ` 〈i2, sto′′〉 →i (sto′, (T2, v2))

envP , envV ` 〈i1 ≥ i2, sto〉 →b (sto′, (bool, v3))

Where v3 =

{
tt if v1 ≥ v2
ff if v1 < v2

[IntegerGreaterThanTrue]

envP , envV ` 〈i1, sto〉 →i (sto′′, (T1, v1))

envP , envV ` 〈i2, sto′′〉 →i (sto′, (T2, v2))

envP , envV ` 〈i1 > i2, sto〉 →b (sto′, (bool, v3))

Where v3 =

{
tt if v1 > v2

ff if v1 ≤ v2

[NotOperator]
envP , envV ` 〈b1, sto〉 →b (sto′, (T1, v1))

envP , envV ` 〈!b1, sto〉 →b (sto′, (bool, v2))

Where v2 = ¬v1

[BooleanAnd]

envP , envV ` 〈b1, sto〉 →b (sto′′, (T1, v1))

envP , envV ` 〈b2, sto′′〉 →b (sto′, (T2, v2))

envP , envV ` 〈b1 and b2, sto〉 →b (sto′, (bool, v3))

Where v3 = v1 ∧ v2

[BooleanOr]

envP , envV ` 〈b1, sto〉 →b (sto′′, (T1, v1))

envP , envV ` 〈b2, sto′′〉 →b (sto′, (T2, v2))

envP , envV ` 〈b1 or b2, sto〉 →b (sto′, (bool, v3))

Where v3 = v1 ∨ v2

[RegisterBitToBool]
envP , envV ` 〈i, sto〉 →i (sto′, (Ti, vi))

envP , envV ` 〈x{i}, sto〉 →b (sto′, (bool, v))

Where (TReg, l) = sto(envV x)

And (Tr, vr) = sto(l)

And v =


tt if

⌊ vr
2(vi)

⌋
mod 2 = 1

ff if
⌊ vr

2(vi)

⌋
mod 2 = 0

[RegisterLiteralBitToBool]

envP , envV ` 〈i1, sto〉 →i (sto′′, (Ti1, vi1))

envP , envV ` 〈i2, sto′′〉 →i (sto′, (Ti2, vi2))

envP , envV ` 〈TReg(i1){i2}, sto〉 →b (sto′, (bool, v))

If vi1 ≥ 0

If vi2 ≥ 0 And vi2 < bitlen(TReg)

Where (Tr, vr) = sto(vi1)
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And v =


tt if

⌊ vr
2(vi2)

⌋
mod 2 = 1

ff if
⌊ vr

2(vi2)

⌋
mod 2 = 0

Table C.15: The transition system →b
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Type System

To map variable and procedure names to their corresponding type we define a partial function, the
type environment, E as follows:

E : (VNames ∪PNames) ⇀ Typesk

An update of the type environment is written as follows E[x 7→ (T1, T2, . . . Tk)] where the new Type
environment E′ is:

E′(y) =

{
E(y) if y 6= x

(T1, T2, . . . Tk) if y = x

When defining new variables we check if the variable-name is already defined in the type environ-
ment, before updating the type-environment. We do this by returning undefined if the variable is
not yet defined in the type environment and making a check in each specific case.

E∅(y) = (undefined)

Programs

Type rules for program statements in Tang has the following type judgement: E ` P : ok
Table D.1 shows the type rules for program statements.

[Program] E ` S : ok Where E = EScan(S,E∅[scope 7→ nothing])

[Empty] E∅[scope 7→ nothing] ` ε : ok

Table D.1: Type rules for Programs

Statements

Type rules for root level statements in Tang has the following type judgement: E ` S : ok
The type rules for statements can be seen in table D.2.
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[CompoundStatement]
E ` S1 : ok E1 ` S2 : ok

E ` S1 newline S2 : ok
Where E1 = E(S1, E)

[ProcedureDeclaration]

E ` T1 x1 : ok
E1 ` T2 x2 : ok
E2 ` T3 x3 : ok

. . .
Ek−1 ` Tk xk : ok

Ek[scope 7→ (T )] ` s : ok

E ` T p(T1 x1, T2 x2, . . . Tk xk) indent s dedent : ok

If E(p) 6= (undefined)
Where E1 = E(T1 x1, E)
and E2 = E(T2 x2, E2)
. . .
and Ek = E(Tk xk, Ek)

[InteruptStatement]
E ` n : TInt E[scope 7→ (nothing)] ` s : ok

E ` interrupt(n) indent s dedent : ok

Table D.2: Type rules for Root level statements

Scoped level statements

Type rules for scoped level statements in Tang has the following type judgement: E ` s : ok
Table D shows the type rules for the scoped level statements in Tang. The auxiliary function
[V arAux] in table D.9 states that x is bound to the type of T .

[Newline] E ` newline : ok

[CompoundSimpleStatement]
E ` s1 : ok E1 ` s2 : ok

E ` s1 newline s2 : ok

Where E1 = E(s1, E)

[V ariableDeclaration] E ` T x : ok

If E(x) = (undefined)
and T 6= nothing

[V ariableDefinition]
E ` e : T1

E ` T x = e : ok

If E(x) = (undefined)
if T 6= nothing
if T = T1

or T ∈ IntTypes
and T1 ∈ IntTypes
and T = largestIntegerType(T, T1)

[Assignment]
E ` x : T E ` e : T1

E ` x = e : ok

If T = T1

or T ∈ IntTypes
and T1 ∈ IntTypes
and T = largestIntegerType(T, T1)

[RegisterBitAssigment]
E ` x : TReg E ` i : TInt E ` b : bool

E ` x{i} = b : ok
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[RegisterLiteralAssignment]
E ` i1 : TInt E ` i2 : TInt E ` b : bool

E ` TReg(i1){i2} = b : ok

[Return] E ` return : ok

If E(scope) = (nothing)

[ReturnWithV alue]
E ` e : T

E ` return e : ok

Where (Tscope) = E(scope)
If Tscope = (T )
or Tscope ∈ IntTypes
and T ∈ IntTypes
and Tscope = largestIntegerType(T, Tscope)

[WhileStatement]
E ` b : bool E ` s : ok

E ` while(b) indent s dedent : ok

[ForStatement]
E ` i1 : TInt1 E ` i2 : TInt2 E[x 7→ (TInt3)] ` s : ok

E ` for(TInt x from i1 to i2) indent s dedent : ok

Where TInt3 = largestIntegerType(TInt1 , TInt2)
If E(x) = (undefined)

Table D.4: Type rules for scoped level statements

IfStatements

Type rules for if statements in Tang has the following type judgement: E ` sif : ok
In table D.5 the type rules for if statements are shown.

[IfStatement]
E ` b : bool E ` s : ok

E ` if(b) indent s dedent : ok

[IfElseIf ]
E ` b : bool E ` s : ok E ` sif : ok

E ` if(b) indent s dedent else sif : ok

[IfElseStatement]
E ` b : bool E ` s1 : ok E ` s2 : ok

E ` if(b) indent s1 dedent else indent s2 dedent : ok

Table D.5: Type rules for if statements

Expression

Type rules for expressions in Tang has the following type judgement: E ` e : T
The type rules for expressions are shown in table D.6.
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[LeftV alueEvaluation] E ` x : T

Where (T ) = E(x) and T 6= undefined

[ParenthesisExpression]
E ` e : T

E ` (e) : T

[ProcedureCallExpression]

E ` e1 : T1
E ` e2 : T2

. . .
E ` ek : Tk

E ` p(e1, e2, . . . ek) : Tr

Where (Tr, T1, T2, . . . Tk) = E(p)

[RegisterLiteralExpression]
E ` n : TInt

E ` TReg(n) : TReg

Table D.6: Type rules for expressions

Integer expressions

Type rules for integer expression in Tang has the following type judgement: E ` i : TInt
The different type rules for integer expressions are shown in table D.7.
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[Numeral] E ` n : TInt

Where v = N JnK

And TInt =


int8 if v ∈ Set(int8)

int16 if v ∈ Set(int16) and v /∈ Set(int8)

int32 if v ∈ Set(int32) and v /∈ Set(int16)

[AddOperation]
E ` i1 : TInt1 E ` i2 : TInt2

E ` i1 + i2 : TInt

Where TInt = largestIntegerType(TInt1 , TInt2)

[SubtractOperation]
E ` i1 : TInt1 E ` i2 : TInt2

E ` i1 − i2 : TInt

Where TInt = largestIntegerType(TInt1 , TInt2)

[MultiplicityOperation]
E ` i1 : TInt1 E ` i2 : TInt2

E ` i1 ∗ i2 : TInt

Where TInt = largestIntegerType(TInt1 , TInt2)

[DivisionOperation]
E ` i1 : TInt1 E ` i2 : TInt2

E ` i1 / i2 : TInt

Where TInt = largestIntegerType(TInt1 , TInt2)

[ModuloOperation]
E ` i1 : TInt1 E ` i2 : TInt2

E ` i1 % i2 : TInt

Where TInt = largestIntegerType(TInt1 , TInt2)

[PowerOperation]
E ` i1 : TInt1 E ` i2 : TInt2

E ` i1ˆ i2 : TInt

Where TInt = largestIntegerType(TInt1 , TInt2)

Table D.7: Type rules for integer expressions

Boolean expressions

Type rules for boolean expressions in Tang has the following type judgement: E ` b : bool
The type rules for boolean expressions are shown in table D.8.
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[True] E ` true : bool

[False] E ` false : bool

[EqualInt]
E ` i1 : TInt1 E ` i2 : TInt2

E ` i1 == i2 : bool

[EqualBool]
E ` b1 : bool E ` b2 : bool

E ` b1 == b2 : bool

[LessThan]
E ` i1 : TInt1 E ` i2 : TInt2

E ` i1 < i2 : bool

[GreaterThan]
E ` i1 : TInt1 E ` i2 : TInt2

E ` i1 > i2 : bool

[LessThanEqual]
E ` i1 : TInt1 E ` i2 : TInt2

E ` i1 <= i2 : bool

[GreaterThanEqual]
E ` i1 : TInt1 E ` i2 : TInt2

E ` i1 >= i2 : bool

[Not]
E ` b : bool

E ` !b : bool

[LogicalAnd]
E ` b1 : bool E ` b2 : bool

E ` b1 and b2 : bool

[LogicalOr]
E ` b1 : bool E ` b2 : bool

E ` b1 or b2 : bool

[RegisterGetBit]
E ` x : TReg E ` i : TInt2

E ` x{i} : bool

[RegisterLiteralGetBit]
E ` i1 : TInt1 E ` i2 : TInt2

E ` TReg(i1){i2} : bool

Table D.8: Type rules for boolean expressions

Auxilary functions

[CompoundAux1] E(S1 newline S2, E) = E(S2, E(S1, E))

[CompoundAux2] E(s1 newline s2, E) = E(s2, E(s1, E))

[V arAux] E(T x,E) = E[x 7→ (T )]

[V arInitAux] E(T x = e, E) = E[x 7→ (T )]

Table D.9: Auxiliary functions for updating the type environment
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[CompoundAuxScan1] EScan(S1 newline S2, E) = EScan(S2, EScan(S1, E))

[CompoundAuxScan2] EScan(s1 newline s2, E) = EScan(s2, EScan(s1, E))

[ProcAuxScan] EScan(Tr p(T1 x1, T2 x2, . . . Tk xk) indent s dedent, E) = E[p 7→ (Tr, T1, T2, . . . Tk)]
If E(p) = (undefined)

Table D.10: Auxiliary functions for updating the type environment
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AST of Alias.tang

AST

eofGlobalStatement

CompoundGlobalStatement

GlobalStatement

CompoundGlobalStatement

GlobalStatement

CompoundGlobalStatement

GlobalStatement

Statement

IntegerAssignment

IntegerExpression

identifier

=identifier

newlineGlobalStatement

Statement

IntegerDeclaration

identifierIntType

int8

newlineGlobalStatement

Statement

IntegerAssignment

IntegerExpression

numeral

=identifier

newlineGlobalStatement

Statement

IntegerDeclaration

identifierIntType

int8
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Language Documentation

The purpose of this section is to give a brief documentation of the usage of Tang.

Overview of Tang
The main purpose of Tang, is to bridge the gap for programmers, wanting to learn embedded
programming. As of now, getting into programming embedded systems, i.e. Arduino, can be tedious,
and involves learning a large number of new constructs. What Tang tries to accomplish, is to
identify these constructs, and simplify them. An example of this, is working with bitwise operators.
Other structural changes are made, such as removing brackets as a form of structuring the scope
of program. Instead, indentation serves this purpose, and enforces a cleaner, more readable code
in general.

Tang tutorial
In this tutorial, it is assumed, that the target embedded system used is an Arduino Nano.
To begin learning Tang, one needs to understand, how a program is executed. Tang works in a
top-down fashion, which means that any chip running a Tang program starts at the top of the
source code, and moves downwards until the end of the file. This means that there is no need to
define a main function to run a program. A result of this is that short programs are simple to write,
as not much structure is needed to make a functional program.
As Tang is designed to be used with embedded programming, there usually is no console to print
text. Therefore, the Blink example will be used instead of the famous Hello World example. The
Blink example, is a simple program, designed to make the on-board diode on an embedded board
blink, where in this tutorial, it is the diode on an Arduino board.
An important aspect of working with embedded systems, is knowing how to manipulate the differ-
ent ports and pins on the board. To access ports on the board, they first have to be initialised as
a variable. In Tang, this is done by assigning a specific port to the register type. The number of
a given port, varies from board to board and it is therefore important to look at the data sheet for
the specific board used. In this example, the name of the port we want to use, is PORTB, where
the LED we want to use is located on pin 5. On the data sheet, seen here [20], the reference number
given is hexadecimal 0x24, which is 36 in decimal. In our blink example, the instantiating of the
variables looks like this:
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1 register8 ddrb = register8 (36)
2 register8 port = register8 (37)

Listing F.1: Assigning a register type in Tang

The reason for using two registers, namely ddrb and port, is that, ddrb serves the purpose of defining
our port as an output port, whereas port is used for the actual manipulation of the pins on that
specific port. Now that we have our register types, we need to define which pin on the port we
want to work with. As mentioned earlier, the pin we want to use is pin 5, and we begin by setting
it to an output pin. This is done by setting ddrb5 to true, meaning that the fifth bit of the ddrb
register is flipped to true. Next we want the LED turned on at the beginning of the program. This
is done by setting port5 to true as well. To keep track of how long the LED has been on or off, an
integer variable has to be declared. In Tang, integers are defined with the keyword int, followed by
the bit length of the integer, which can be either 8, 16, or 32. In this example, a bit length of 8 is
sufficient, and the integer can be defined as unsigned, since we have no need for negative numbers.
That means the keyword we want to use here is int8. The reason we need an integer, is to keep
track of how the time since last blink. An example of both the pin and integer declarations can be
seen below:

1 ddrb {5} = true
2 port {5} = true
3 int8 counter = 0

Listing F.2: Pin and integer declarations in Tang

Now that we have declared the necessary variables, its time to define the loop, which switches the
LED on and off. Here it is optimal to use a while loop, which is done by writing the keyword while,
followed by a boolean expression in parenthesis. To make the loop run forever, use the boolean
expression true. The code you want the loop to run, needs to be indented, in order for the program
to identify it. In the loop, we want to increment the integer, until it reaches a certain point, where
we want to switch the state of the LED, and reset the counter. This can be done by a simple if
statement. The entire loop is shown below:

1 while(true)
2 if(counter == 100000)
3 counter = 0
4 port {5} = !port {5}
5 else
6 counter = counter + 1

Listing F.3: An example of a loop, and a conditional statement in Tang

As seen in the example, the counter keeps running the else statement, where the integer is increased,
until it reaches 100000. This number is not chosen for any other reason, than that it corresponds to
the LED switching on and off roughly every second. When the counter reaches 100000, the counter
is set to 0, and port5 flips value. Since port5 is a bit, therefore a boolean value, it is switched
between its on and off state. As the counter is now 0, the loop start over by increasing it by one
every cycle, until it reaches 100000 again. The full Blink example is shown below:
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1 register8 ddrb = register8 (36)
2 register8 port = register8 (37)
3 ddrb {5} = true
4 port {5} = true
5 int8 counter = 0
6 while(true)
7 if(counter == 100000)
8 counter = 0
9 port {5} = !port {5}
10 else
11 counter = counter + 1

Listing F.4: The entire blink example in Tang
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Cheat Sheet
A cheat sheet is a way to give a short an concise representation of a language. A cheat sheet
is therefore created for the language Tang, showing the types, operators, control structures, and
precedence of the language. To give context for the cheat sheet, an example is shown using the
cheat sheet in practice.

Table F.1: Tang Operators, their associativity and precedence.

Precedence Operator (Associativity)
1 () (Left to right)

! (Right to left)
2 ∧ (Left to right)
3 / (Left to right)

% (Left to right)
4 + (Left to right)

- (Left to right)
5 > (Left to right)

< (Left to right
>= (Left to right)
<= (Left to right)

6 = (Right to left)
!= (Left to right)

7 and (Left to right)
8 or (Left to right)

Table F.2: Tang Types and control statements.

Type Value Flow Control
int8 −27to27 − 1 for(Statements)
int16 −215to215− 1 while(boolean)
int32 −231to231− 1 if(boolean)
bool {true, false } else if(boolean)
register8 0to216− 1 else
register16 0to216− 1 functionName(parameters)
nothing
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Code example showing constructs in Tang
An example in Tang, using the constructs from the the cheat sheet F.2, F.1.

1 // Declaring variables
2 int8 i
3 i = 5
4 int16 a = 1025
5 bool b
6 b = false
7 bool b = true
8
9
10 // Using registers
11
12 register8 DDRB = register (36)
13 DDRB {3} = false
14 register16 r16 = register (12)
15
16 // This is a function , with the return type int8 and two formal

↪→ parameters of type int8
17 int8 foo(int8 i, int8 i2)
18 int8 r = i / i2
19 return r
20
21 // calling foo
22
23 // using conditional statements
24 int8 i1 = 10
25 int8 i2 = 5
26 int8 r
27 [...]

Listing F.5: An example of Tang
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1 [...]
2 if(i2 != 0)
3 r = foo(i1, i2)
4 else
5 r = 0
6
7 // using while loop
8 r = 0
9 while(r < 20)
10 r = r + 1
11
12 // using logical operators
13 bool b = true or false
14
15 // using recursion
16
17 int32 factorial(int32 a)
18 if (a == 0)
19 return 1
20 return a * factorial(a-1)

Listing F.6: An example of Tang
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Parser Generator Snippets

This appendix contains snippets used to explain the implementation of the parser generator in
section 8.3.1. The entire source code can be seen in the electronic appendix as explained in the
preamble.
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1 [. . . ]
2 MethodType parseTerminalMethod = new MethodType("public",

↪→ \$"{dataNamespace }.Token", "ParseTerminal")
3 {
4 Parameters = new List <ParameterType >()
5 {
6 new ParameterType (\$"IEnumerator <{ dataNamespace }.Token >",

↪→ "tokens"),
7 new ParameterType("string", "expected")
8 },
9 Body = new List <string >()
10 {
11 "if(expected == \" EPSILON \")",
12 "{",
13 \$" return new {dataNamespace }.Token() {{ Name =

↪→ \" EPSILON \" }};",
14 "}",
15 \$"{dataNamespace }. Token token = tokens.Current;",
16 "if(token.Name == expected)",
17 "{",
18 " tokens.MoveNext ();",
19 " return token;",
20 "}",
21 "else",
22 "{",
23 " throw new Exception ();",
24 "}"
25 }
26 };
27
28 [. . . ]

Listing G.1: Shows the code for generating the ParseTerminal method

1 [. . . ]
2 foreach (var production in bnf)
3 {
4 MethodType parseMethod = new MethodType("public",

↪→ \$"{dataNamespace }.{ production.Key}",
↪→ \$"Parse{production.Key}")

5 {
6 Parameters = new List <ParameterType >()
7 {
8 new ParameterType (\$"IEnumerator <{ dataNamespace }.Token >",

↪→ "tokens")
9 }
10 };
11
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12 List <string > methodStatements = new List <string >();
13
14 methodStatements.Add(\$"{dataNamespace }.{ production.Key} node =

↪→ new {dataNamespace }.{ production.Key}(){{ Name =
↪→ \"{ production.Key}\" }};");

15
16 methodStatements.Add("switch(tokens.Current.Name)");
17 methodStatements.Add("{");
18
19 for(int expansionIndex = 0; expansionIndex <

↪→ production.Value.Count; expansionIndex ++)
20 {
21 foreach (var predictSymbol in

↪→ grammerInfo.PredictsSets [( production.Key ,
↪→ expansionIndex)])

22 {
23 methodStatements.Add(\$" case \"{ predictSymbol }\":");
24 }
25
26 foreach (var expansionSymbol in

↪→ bnf[production.Key][ expansionIndex ])
27 {
28 if(IsTerminal(expansionSymbol , bnf))
29 {
30 methodStatements.Add(\$"node.Add(ParseTerminal(tokens ,

↪→ \"{ expansionSymbol }\"));");
31 }
32 else
33 {
34 methodStatements.Add(\$"node.Add(Parse{expansionSymbol }( tokens));");
35 }
36 }
37
38 methodStatements.Add(\$"return node;");
39
40 }
41
42 methodStatements.Add(\$"default:");
43 methodStatements.Add(\$"throw new Exception ();");
44
45 methodStatements.Add("}");
46
47 parseMethod.Body = methodStatements;
48
49 parserClass.Methods.Add(parseMethod);
50 }
51 [. . . ]

Listing G.2: Shows the code for generating methods for parsing the non terminals in the BNF for
Tang
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Translator Syntax

1 Translator -> Systems Rules eof
2
3 Systems -> System newline Systems
4 | EPSILON
5
6 System -> goto Alias := Domain goto Domain
7 | <=> Alias := Domain <=> Domain
8 | </> Alias := Domain </> Domain
9
10 Domain -> ListDomain
11 | TreeDomain
12
13 ListDomain -> [ Domains ]
14
15 Domains -> TreeDomain Domains
16 | EPSILON
17
18 TreeDomain -> Symbol
19
20 Symbol -> symbol
21 | escapedSymbol
22
23 Rules -> Rule RulesP
24 RulesP -> newline Rule RulesP
25 | EPSILON
26
27 Rule -> Conclusion Premises
28 | EPSILON
29
30 Conclusion -> Pattern NewlineGoto Alias Structure
31
32 NewlineGoto -> newline goto
33 | goto
34
35 Premises -> indent Premis PremisesP dedent
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36 | EPSILON
37 PremisesP -> newline Premis PremisesP
38 | EPSILON
39
40 Premis -> Structure StructureOperation
41 | EPSILON
42
43 StructureOperation -> Goto
44 | Equal
45 | NotEqual
46
47 Goto -> goto Alias Pattern
48
49 Equal -> <=> Alias Structure
50
51 NotEqual -> </> Alias Structure
52
53 Pattern -> ListPattern
54 | TreePattern
55
56 ListPattern -> [ Patterns ]
57
58 TreePattern -> Name Alias ChildrenPattern
59
60 Name -> Symbol
61
62 Alias -> : symbol
63 | EPSILON
64
65 ChildrenPattern -> [ Patterns ]
66 | EPSILON
67
68 Patterns -> TreePattern Patterns
69 | EPSILON
70
71 Structure -> ListStructure
72 | TreeStructure
73
74 ListStructure -> [ Structures ]
75
76 TreeStructure -> Placeholder Name ChildrenStructure Insertion
77
78 Placeholder -> %
79 | EPSILON
80
81 Insertion -> insert TreeStructure
82 | EPSILON
83
84 ChildrenStructure -> [ Structures ]
85 | EPSILON
86
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87 Structures -> TreeStructure Structures
88 | EPSILON

Listing H.1: Shows the LL(1) grammar for the translator syntax in Backus Naur Form.
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Blink Java

1 package arduino.tutorial;
2
3 import static haiku.avr.lib.arduino.WProgram .*;
4 import static haiku.avr.AVRConstants .*;
5
6 public class blink {
7
8 public static void _wait() {
9 for(long i = 0; i < 3200000; i++) {}
10 }
11
12 public static void main(String [] args) {
13 DDRB |= 1<<5;
14 while(true) {
15 PORTB |= 1<<5; // Turn LED on
16 _wait(); // waits for a second
17 PORTB &= ~(1<<5); // Turn LED of
18 _wait(); // waits for a second
19 }
20 }
21 }
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Programming Tasks in Tang
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The Tang Programming Language 
	

Task 1 

	
Figure	1:	Shows	a	program	in	The	Tang	Programming	Language.	

a) What	is	the	value	of	b	after	executing	the	program	in	figure	1?		

o true	

o false	

b) What	is	the	value	of	s?	

Answer:	_________	

Task 2 

Figure	2	shows	an	Arduino	Nano.	An	Arduino	Nano	is	a	microcontroller	which	can	be	programmed	using	
The	Tang	Programming	Language.	
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Figure	2:	Shows	an	Arduino	Nano	

a) Mark	which	of	the	following	devices	you	have	programmed	before:	

[		]	 Arduino	Uno	

[		]	 Arduino	Nano	

[		]	 Other	microcontrollers	or	embedded	devices	

[	]	 PC/Mac	

As	seen	in	figure	2	the	Arduino	Nano	has	what	is	called	pins	along	the	sides.	Each	pin	has	a	name	like	
D2,	D3,	D4	etc.	

Pins	are	used	to	connect	the	Arduino	with	other	devices	like	LEDs	and	sensors.	A	pin	can	either	be	used	

as	input	or	output.	

A	special	pin	on	the	Arduino	Nano	is	the	pin	D13	which	is	connected	to	the	LED	on	the	Arduino	Nano.	

To	make	this	Led	turn	on	and	off	you	need	make	D13	output	5	or	0	volts.	To	do	this	you	need	to	

configure	hardware	registers	which	are	parts	of	the	Arduino	Nano’s	memory	that	control	the	behavior	

of	pins	like	D13.	

To	control	pin	D13	and	thereby	the	onboard	Led	you	can	use	the	registers	at	address	36	and	37.	

The	register	at	address	36	contains	8	bits	where	the	bit	at	index	5	determines	if	pin	D13	is	input	or	

output.	The	pin	is	output	when	the	bit	value	is	set	to	1.	
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The	register	at	address	37	does	also	contain	8	bits	where	the	bit	at	index	5	determines	if	pin	D13’s	

output	value	is	5	or	0	volts.	The	output	voltage	is	5	volts	when	the	bit	value	is	set	to	1.		

In	The	Tang	Programming	language,	you	can	change	the	value	of	a	hardware	register	using	the	

register8	datatype.		

An	example	of	a	register	variable	declaration	of	a	register	at	address	40	is	shown	below	in	figure	3.	

	

Figure	3:	Shows	how	to	declare	a	register8	variable	

To	change	the	bit	values	of	the	register	then	you	can	use	the	bit	index	operator	as	shown	in	figure	4.	

	

Figure	4:	Shows	how	to	change	the	bit	value	at	index	3	to	false.	

b) Write	a	program	in	The	Tang	Programming	Language	that	sets	pin	D13	as	output	and	the	output	
value	to	5	volts.	This	should	turn	on	the	Led.	
	
	

c) Write	a	function	called	ledOn	in	The	Tang	Programming	Language	that	turns	the	Led	on.	

	

d) Write	a	function	called	ledOff	in	The	Tang	Programming	Language	that	turns	the	Led	off.	

	

e) Make	program	that	turns	the	Led	on	and	off	continuously	with	an	interval	of	1	second.	Assume	
there	exist	a	function	called	delay	that	stops	execution	in	a	duration	based	on	a	parameter	in	
milliseconds.	
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J.1 Task Answers

This appendix shows the answers given by test person A and B to the tasks in appendix J.

J.1.1 Testperson A

1 task 1:
2 a) false
3 b) 0 + 1 = 1 + 2 = 3 + 3 = 6 + 4 = 10 + 5 = 15
4 task 2:
5 a) PC/Mac
6 b)
7 register8 PORT36 = register8 (36)
8 register8 PORT37 = register8 (37)
9 PORT36 {5} = true
10 PORT37 {5} = true
11 c)
12 void LedOn() {
13 register8 PORT36 = register8 (36)
14 register8 PORT37 = register8 (37)
15 PORT36 {5} = true
16 PORT37 {5} = true
17 }
18 d)
19 void LedOff () {
20 register8 PORT37 = register8 (37)
21 PORT37 {5} = false
22 }
23 e)
24 while(true) {
25 LedOn()
26 delay (1000)
27 LedOff ()
28 delay (1000)
29 }

J.1.2 Testperson B
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1 task 1)
2 a: true
3 b: 21
4 task 2)
5 a: uno , nano , pc
6 b:
7 register8 r36 = register8 (36)
8 register8 r37 = register8 (37)
9 r36{5} = true
10 r37{5} = true
11 nothing ledOn()
12 r36{5} = true
13 r37{5} = true
14 nothing ledOff ()
15 r36{5} = true
16 r37{5} = false
17 while (true)
18 ledOn()
19 delay (1000)
20 ledOff ()
21 delay (1000)
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AddExpression Parse-tree

IntegerExpression

AddExpression

IntegerExpression

numeral:3

+IntegerExpression

AddExpression

numeral:2+numeral:1

(a) ParseTree for example

AddSubExpression

AddSubExpressionP

AddSubExpressionP

EPSILONAddSubExpressionPMulDivExpressionP

numeral:3

+

MulDivExpression

numeral:2

+

MulDivExpression

numeral:1

(b) AST for AddExpression example used in multiple unit tests.
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Appendix L

Input Grammars For Parser Generator Tools

Listed in this appendix are the input grammars for the tools examined and documented in section
8.1. Listing L.1 shows a subset of the grammar of Tang, which is used as input grammar for the
tools analysed. The grammar is not up-to-date with the actual grammar for Tang, but this is
insignificant as the purpose is to show how grammar looks in the syntax of different tools.

Input Grammar

1 Program -> Statements
2 Statements -> Statement StatementsP
3 StatementsP -> newline Statement StatementsP
4 | EPSILON
5 Statement -> simpleType identifier Definition
6 | identifier assign integer
7 | newline
8 Definition -> assign integer
9 | EPSILON

Listing L.1: The input grammar used for the examples below in BNF.

Coco/R

1 Program = Statements.
2 Statements = Statement StatementsP.
3 StatementsP = "newline" Statement StatementsP
4 | "EPSILON ".
5 Statement = "simpleType" "identifier" Definition
6 | "identifier" "assign" "integer"
7 | "newline ".
8 Definition = "assign" "integer"
9 | "EPSILON ".

Listing L.2: Grammar for the Coco/R tool.
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GOLD

1 "Start Symbol" = <Program >
2
3 <Program > ::= <Statements >
4 <Statements > ::= <Statement > <StatementsP >
5 <StatementsP > ::= newline <Statement > <StatementsP >
6 | EPSILON
7 <Statement > ::= simpleType identifier <Definition >
8 | identifier assign integer
9 | newline
10 <Definition > ::= assign integer
11 | EPSILON

Listing L.3: Grammar for the GOLD tool.

SableCC

1 Productions
2 program = {statements };
3 statements = {statement} {statementsp };
4 statementsp = newline {statement} {statementsp}
5 | epsilon;
6 statement = simpletype identifier {definition}
7 | identifier assign integer
8 | newline;
9 definition = assign integer
10 | epsilon;

Listing L.4: Grammar for the SableCC tool.

ANTLR4

1 grammar NameOfFile;
2 program : ’begin ’ statements ’end ’;
3 statements : statement statementsP;
4 statementsP : newline statement statementsP
5 | ; // epsilon
6 statement : simpleType identifier definition
7 | identifier assign integer
8 | newline;
9 Definition : assign integer
10 | ; // epsilon

Listing L.5: Grammar for the ANTLR4 tool.
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LLLPG

1 LLLPG (lexer) {
2 public rule Program @{Statements };
3 public rule Statements @{Statement StatementsP };
4 public rule StatementsP @{newline Statement StatementsP
5 | EPSILON };
6 public rule Statement @{simpleType identifier Definition
7 |identifier assign integer
8 |newline };
9 public rule Definition @{assign integer
10 |EPSILON };
11 };

Listing L.6: Grammar for the LLLPG tool.
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Appendix M

Command-line Arguments for Compiling Bare
Minimum Blink Programs

The numbers seen in table 3.2 describes the size of a blink program written in the languages listed
in addition to the size of a bare minimum (empty) program.
The blink program written in AVR Assembler and the blink program written in C are compiled
with the command -mmcu=atmega328p option and -Os flag, where -Os refers to optimising the
code in regards to size of the program.
The blink program written in the Arduino language is compiled by using the Arduino IDE version
1.8.2.
The Java blink program was compiled by haiku with –Config ArduinoIDEUpload option [37].
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